
Filtering Offensive Language in Online Communities using
Grammatical Relations

Zhi Xu
Department of Computer Science and

Engineering
The Pennsylvania State University

University Park, PA 16802
zux103@cse.psu.edu

Sencun Zhu
Department of Computer Science and

Engineering
The Pennsylvania State University

University Park, PA 16802
szhu@cse.psu.edu

ABSTRACT
Offensive language has arisen to be a big issue to the health
of both online communities and their users. To the online
community, the spread of offensive language undermines its
reputation, drives users away, and even directly affects its
growth. To users, viewing offensive language brings negative
influence to their mental health, especially for children and
youth.

When offensive language is detected in a user message, a
problem arises about how the offensive language should be
removed, i.e. the offensive language filtering problem. To
solve this problem, manual filtering approach is known to
produce the best filtering result. However, manual filtering
is costly in time and labor thus can not be widely applied.

In this paper, we analyze the offensive language in text
messages posted in online communities, and propose a new
automatic sentence-level filtering approach that is able to
semantically remove the offensive language by utilizing the
grammatical relations among words. Comparing with ex-
isting automatic filtering approaches, the proposed filtering
approach provides filtering results much closer to manual
filtering.

To demonstrate our work, we created a dataset by manu-
ally filtering over 11,000 text comments from the YouTube
website. Experiments on this dataset show over 90% agree-
ment in filtered results between the proposed approach and
manual filtering approach. Moreover, we show the overhead
of applying proposed approach to user comments filtering
is reasonable, making it practical to be adopted in real life
applications.

1. INTRODUCTION
Online social networking (OSN) websites have enjoyed a

great success in recent years. People in OSN websites form
social aggregations, called online communities [8]. These on-
line communities have become the new frontier in today’s so-
cial relationships and provide great places for self-expression
and the exchange of ideas. Many of them, such as Facebook,
have grown to huge communities with millions of registered
members1.

1Facebook statistics, at http://www.facebook.com/press/
info.php?statistics

CEAS 2010 - Seventh annual Collaboration, Electronic messaging, Anti-
Abuse and Spam Conference July 13-14, 2010, Redmond, Washington, US

Online communities, being virtual, however, have also en-
couraged the use of offensive language. The definition of
offensive language can be subjective because different view-
ers have different feelings about the same content. In this
paper, we accept the definition of offensive language as text
content including gutter language, sexually explicit mate-
rial, racist, graphic violence, or any other content that may
be considered offensive on social, religious, cultural or moral
grounds2.

Unfortunately, offensive language has spread into almost
every corner of online communities. A study, done by ScanSafe,
shows that up to 80% of blogs contain offensive language [5].
Posting messages with offensive language intentionally has
become a major way of cyber-bullying in online commu-
nities. To users, offensive language can be very harmful
to their mental health, especially for children and youth.
To the online community, the deluge of offensive language
undermines the community’s reputation, drives users away,
and even directly affects its growth. For example, an iPhone
application, Tweetie, was once rejected by Apple company
in March 2009, for bringing offensive language posted in the
Twitter community to iPhone users.

People have realized the problems brought by offensive
language in online communities. And many efforts have
been made on detecting the existence of offensive language
within user messages, such as [10] and [3].

However, detection alone is not enough to eliminate the
hazard caused by offensive language. When offensive con-
tents (e.g., offensive words) are detected within a user mes-
sage, a question arises naturally about how the detected
offensive content should be removed from message. The
process of removing offensive content from user messages
is called offensive language filtering. Consider a sentence
consisting of a sequence of words. The problem of identi-
fying words that should be removed in offensive language
filtering is called offensive language filtering problem.

In this paper, we propose a sentence-level semantic filter-
ing approach, which utilizes grammatical relations among
words to semantically remove offensive content in a sen-
tence. Specifically, for each sentence within a user message,
we first identify offensive words, and then extract semantic
relations and syntactic relations among words in the sen-
tence. Based on the extracted relations, we estimate which
words should be removed with those offensive words using
two heuristic rules, i.e. “Modification Relation Rule” and

2The Internet Content Rating Association (ICRA), at
http://www.icra.org/sitelabel/

“Pattern Integrity Rule”. To avoid confusion, we use the
term “removable” to describe the result of our estimation.
Words estimated as removable will be deleted from sentence
at the end of filtering.

Compared with existing automatic filtering approaches,
such as keyword censoring approach applied on YouTube
website and content control approach applied in Microsoft
Parental Controls, the proposed semantic filtering approach
is able to remove offensive content in a text message thor-
oughly while keeping inoffensive content untouched as much
as possible. Further, the readability of filtered content is
guaranteed so as to make our filtering transparent to reader.
Compared with manual filtering, which outputs optimal fil-
tering results, the proposed semantic filtering approach is
fully automatic with close filtering results.

To demonstrate the performance, we have created a dataset
containing 11670 user comments collected from YouTube
website. For each user comment, we perform both man-
ual filtering and semantic filtering and then compare their
outputs. According to experimental results, the semantic
filtering achieves as high as 90.94% agreement with man-
ual filtering. Meanwhile, the processing speed of semantic
filtering is about 48.8 !"#$ per comment, making it prac-
tical to be deployed at the server side of online websites.
Furthermore, for user side application, we present an imple-
mentation of semantic filter as a Firefox extension, which is
able to filter the user comments on webpages when a user is
browsing on OSN websites. We show the advantage of our
proposed filtering extension by comparing it with the “Hide
objectionable words” function provided by YouTube.

2. RELATED WORK
In this section, we review related work and list some major

approaches and methodologies for offensive language filter-
ing in online communities. To demonstrate our observations,
we present examples of applying different approaches in Ta-
ble 1. Sentences in the table are cited from real user com-
ments in YouTube dataset. For mental health of readers, we
replaced the offensive words by special words.

2.1 Keyword Censoring Approach
Keyword censoring approaches match words appearing in

text messages with offensive words stored in the blacklist.
Once found, these offensive words will be removed, partially
replaced (e.g., “a***”), completely replaced(e.g., “****”),
or substituted by family friendly words (e.g., “nice”). Be-
cause of its simplicity, keyword based censoring approach
has been widely applied in OSN websites, such as YouTube3

and World of Warcraft4.
However, the filtering result is not as desired. Brutally

removing words from text message breaks the readability
of text messages. Replacing offensive words with symbols
usually makes it easy to guess the original offensive words.
The idea of substitution seems tempting, but accurate sub-
stitution is usually impractical. Inaccurate substitution will
introduce additional issues. For example, in 2001, Yahoo!
deployed an Email filter which may automatically alter cer-
tain words in emails by family friendly words. This filter
was criticized as a “foolish filter” by BBC news5 because of

3YouTube, at http://www.youtube.com
4World of Warcraft, at www.worldofwarcraft.com/
5http://news.bbc.co.uk/2/hi/sci/tech/2138014.stm

its inaccurate substitution.
To demonstrate the shortcoming of keyword censoring ap-

proaches, we present examples in Table 1. According to pre-
sented filtering results, readers can still easily understand
what the offender wants to say and even be able to infer the
removed words. This indicates the failure filtering because
offensive opinion has been successfully delivered to victims.
Also, removing words from a sentence without considering
their context breaks the readability of rest of the sentence.

Compared with keyword censoring approaches, our pro-
posed semantic filtering approach is much more sophisti-
cated and can achieve thorough filtering effort by utiliz-
ing the grammatical relations among words in the sentence.
Given a sentence containing both offensive and inoffensive
words, not only offensive words but also inoffensive words
assisting to express offensive opinions will be removed dur-
ing our filtering. In this way, we essentially stop the delivery
of offensive opinion. And, there will be no way to infer the
offensive content in original messages after filtering.

2.2 Content Control Approach
Content control approaches are usually deployed at user

side or ISP side to prevent user from seeing inappropriate
content on the Internet. Its filtering is usually done based
on certain criteria, such as URL address, the occurrence of
offensive words, and topic classification. Here our focus is
text based criteria. For example, in Table 1, we present a
sentence based content control approach with threshold set
as the number of offensive words in the sentence. If at least
two offensive words are detected within a sentence, the filter
will remove the sentence from user message.

However, content control approaches are too coarse-grained
to be applied in online communities. First of all, offender
can easily bypass the filtering as long as knowing the estima-
tion criteria. More important, a sentence in user comment
may contain both offensive and inoffensive content. Inoffen-
sive part may be removed falsely because of offensive part,
e.g., the partial offensive case shown in Table 1. Not allow-
ing user to post inoffensive content would easily drive users
away and thus affect the growth of community.

Compared with content control approaches, we provide a
fine-grained filtering by removing only the smallest syntactic
part in the sentence containing offensive language. The inof-
fensive content in the original message will remain; thereby,
user still has the freedom of speech for posting inoffensive
content. We believe such delicate filtering will be more ac-
ceptable to online communities.

2.3 Manual Filtering Approach
Manual filtering is believed to produce the best filtering

result. Basically, user messages are reviewed by community
administrator before being posted on the website. As shown
in Table 1, the administrator is able to easily understand
what the author wants to express and precisely remove only
the offensive content within the text.

However, manual filtering is very time and labor consum-
ing, making it impossible to be widely applied. For example,
in the Sina blog community6, the blog administrator will
manually review and filter user comments on some celebri-
ties’ public blogs. Obviously, users would expect a delay
between posting a comment on a blog and displaying this

6Sina Blog Community, at http://blog.sina.com.cn

Table 1: Filtering results with different approaches
Sentence

(we use !"#$%& and '$& to denote two offensive words)
Partial Offensive Absolute Offensive

Original Comment “this video is !"#$%& good” “it is aston martin and you are a !"#$%& '$&” “you’re a '$&”
Keyword Censoring “this video is ! ∗ ∗∗ good” “it’s aston martin and you are a ! ∗ ∗∗ ' ∗ ∗” “you’re a ' ∗ ∗∗”
Content Control (thld=2) “this video is !"#$%& good” “ ” “you’re a '$&”
Manual Filtering “this video is good” “it’s aston martin” “ ”

comment on the blog’s webpage. Further, the filtering to-
tally relies on the judgment of the community administrator.

Our proposed semantic filtering approach mimics the pro-
cedure of manual filtering by trying to understand the re-
lations among words in order to remove the offensive con-
tent semantically. In our experiments, we show that the
results between our proposed approach and manual filter-
ing are very close (more than 90% agreement). Moreover,
the proposed semantic filtering approach is fully automatic
requiring no interference of administrator.

3. PROPOSED FILTERING PHILOSOPHY
The goal of our semantic filtering is to achieve filtering

results close to that of manual filtering. To reach this goal,
the foremost thing is to answer the question about how the
filtering should be performed in order to get the desired
filtering results.

In this section, we present our answer in three steps. First,
we analyze the characteristics of offensive text content in
user messages. Then, we introduce our filtering philosophy
according to the summarized characteristics. Finally, we
show how this philosophy is transformed into heuristic rules
applicable in the filtering process.

3.1 Offensive Language Text Content
Based on the observation on user comments collected from

YouTube website, a sentence in a user message may contain
both offensive and inoffensive text content. Offensive text
content is exposed intentionally with purpose of bringing
negative influence to victims (e.g., the readers of text mes-
sage). The victim receives the negative influence by reading
the offensive part of sentence and understanding the carried
offensive information.

Hence, the information carried by original sentence can
be represented as % = %!"" + %#$!"" . The offender reaches
his goal when the offensive information %!"" is delivered to
readers. Therefore, to achieve a thorough filtering, all words
used to deliver %!"" should be removed. Meanwhile, with
respect to free speech, the part with %#$!"" should be saved.

3.2 Filtering Philosophy
According to the analysis, we propose the philosophy that

should be followed in sentence-level offensive language filter-
ing:

∙ Precisely identify all offensive contents and remove
them semantically, so that viewers will not notice
the existence of offensive language in the original sen-
tence;

∙ Keep the readability and inoffensive content in the
sentence, so that the author will still be allowed to
express his opinion freely as long as it is not offensive;

We call this the philosophy of “filtering instead of block-
ing”. To the filter, the philosophy states that: if removing
one word will make another word meaningless or confusing
to readers, we should consider removing both words to keep
the readability of a filtered sentence; meanwhile, we only
remove words that are affected by offensive words.

For example, in the sentence “it is aston martin and you
are a crying pig”, suppose “crying” and “pig” are two of-
fensive words, the sentence can be separated into two parts.
The first part, “it is aston martin”, is inoffensive; but the
second part, “you are a crying pig” is offensive. Therefore,
we should remove the second part completely while keep-
ing the first part. The word “and” should also be removed
in order to keep the transparency of filtering as well as the
readability of filtered text content.

3.3 Filtering Rules
Specifically, the proposed philosophy is transformed into

two heuristic rules to estimate the impact of removing words
in a sentence.

Rule 1. (Modification Relation) in a modification rela-
tion, if the modifier is determined to be offensive, removing
modifier solely is enough; if the head is determined to be of-
fensive, both the head and the modifier should be removed.

The modification relation is a binary semantic relation-
ship between two syntactic elements, such as word, phrase,
etc. One element is named head and the other is named
modifier. The modifier is used to describe the head (i.e. the
modified component). Semantically, modifiers describe and
provide more accurate definitional meaning for head. As the
modifier acts as a complement, the removal of the modifier
typically will not affect the grammaticality of the construc-
tion. For example, in the sentence “she likes red apples.”,
the adjective “red” is used to modify the noun “apples”. Re-
moving “red” will keep the readability of rest of sentence.
We admit that, removing modifiers will lose some informa-
tion carried by modifiers. However, if the modifier is deter-
mined removable but the head is not, removing modifier will
remove only the offensive information.

Rule 2. (Pattern Integrity) if removing the offensive word
breaks the integrity of sentence’s basic pattern, the whole
sentence should be removed in order to keep the readability.

English sentences and clauses are organized in basic pat-
terns, such as “Subject-Verb”, “Subject-Verb-Object”, “Subject-
Verb-Adjective”, “Subject-Verb-Adverb”, and “Subject-Verb-
Noun”. Every sentence or clause can be categorized into
one pattern. The integrity of basic pattern is essential to
the readability of content. For example, the sentence “she
sleeps on the sofa.” follows “Subject-Verb” pattern. If we

only remove “sleeps”, the rest of the sentence, “she on the
sofa.” will become nonsense.

In the next section we will show details about applying
these two rules during the filtering.

4. IDENTIFY REMOVABLE CONTENT BY
GRAMMATICAL RELATIONS

A text message can be decomposed into a sequence of
sentences. Each sentence is considered as a unit in filter-
ing. Given a sentence containing both offensive words and
inoffensive words, the goal of filtering is to identify inoffen-
sive words which should be removed together with offensive
words. We define the words that should be removed by the
filtering as “removable” words.

We noticed that manual filtering can easily achieve this
goal because human can easily understand the context of
words in a sentence and precisely identify which words should
be removed with known offensive words. So, we mimic the
manual filtering in that, we extract the grammatical rela-
tions among words from sentences and use the proposed fil-
tering rules to estimate the impact of removing offensive
words on other inoffensive words based on extracted gram-
matical relations.

Specifically, the proposed approach includes two steps (de-
tails to be elaborated in the next two subsections). In the
first step, we scan the sentence and see if offensive words ex-
ist. If exist, we continue to retrieve grammatical information
(i.e. Part-of-Speech tags and typed dependency relations)
among words in the sentence. Using retrieved grammatical
information, we create a tree data structure, named RelTree,
for the second step estimation. In this second step, we pro-
pose a set of estimation functions following the filtering rules
we proposed. Using the RelTree structure and the proposed
rules, we then estimate if there are inoffensive words that
should be removed together with those identified offensive
words.

The overview idea of our semantic filtering approach is
shown in Algorithm 1. Within the algorithm, the functions
&'()*++,-+ and ./+#-#0*)10 generate Part-of-Speech tags
and typed dependency relations, respectively. We use exist-
ing NLP (Natural Language Processing) tools [2] to imple-
ment these two functions. In the rest of this section, we will
focus on the design of two other functions 20#*)#3#4.0##
and 5"),!*)#3#4.0##.

Note that, in this section, we assume that the filtering
is based on a comprehensive offensive lexicon containing all
offensive words. Words do not appear in the lexicon are
considered inoffensive. We discuss the case of incomplete
lexicon separately in Section 6.

4.1 First Step: Grammatical Analysis
In the first step, we extract two types of grammatical in-

formation from a given sentence. One is the Part-of-Speech
information associated with every word. The other is the
dependency relation among words. Part-of-Speech informa-
tion helps us to understand the organization of a sentence,
which is essential for keeping the readability when we try to
remove words from a sentence. Dependency relations will be
used directly to estimate the impact of removing one word
on other semantically related words, making the filtering
more “meaningful”. Combining these two types of informa-
tion, we can create a new data structure, called RelTree, for

input : a text comment . ,
a blacklist of offensive words 64*$74,")

output: a filtered text comment . ′

. ′ ←“”;1

"#-8,")← chunk . into a list of sentences;2

foreach sentence " ∈ "#-8,") do3

scan " for offensive words using 64*$74,");4

if no offensive word found then5

. ′ ← . ′ + ";6

end7

else8

&.0##← &'()*++,-+(");/*get parse tree*/9

./"#)← ./+#-#0*)10("); /* get typed10

dependency relations */
3#4.0##← 20#*)#3#4.0##(&.0##, ./"#));11

/* create RelTree */
8*:#43#4.0##←12

5"),!*)#3#4.0##(3#4.0##,64*$74,")); /*
estimate using RelTree */
"′ ← remove all words in 8*:#43#4.0## those13

are labeled as “removable”;
. ′ ← . ′ + "′;14

end15

end16

Return . ′;17

Algorithm 1: Procedure of Semantic Filtering

Figure 1: A parse tree of a sentence basing on Part-
of-Speech tags

the next-step estimation.

4.1.1 Part-of-Speech Tagging
Part-of-Speech tagging has been widely used in NLP ap-

plications to identify the syntactic properties of lexical items
in a sentence, such as word or phrase. Through Part-of-
Speech tagging, the sentence can be represented in a tree
structure basing on Part-of-Speech tags. We adopt the Penn
Treebank tag set [4] for our Part-of-Speech tagging.

An example of Penn Treebank style parse tree is shown
in Figure 1. Here, the leaf nodes are words appearing in
the sentence. The non-leaf nodes represent syntactic ele-
ments, such as phrases or clauses. Each element consists of
the words within its subtree. For example,in Figure 1, the
words “is”, “aston”, and “martin” constitute a Verb Phrase
(i.e. VP) node. To avoid showing offensive language in this
paper, we use two terms, “crying” and “pig”, to replace
original offensive words in this example.

Figure 2: An example of typed dependency graph

4.1.2 Typed Dependency Relations
Typed Dependency is a kind of general relations describ-

ing the grammatical dependencies within a sentence, pro-
posed by Stanford Natural Language Processing Group [6].
According to [6], each typed dependency includes a depen-
dency type and a (+1;#0-10, <#=#-<#-)) word pair. For ex-
ample, in the sentence “you are a crying pig.”, the typed
dependency amod(pig, crying) means that “crying” is an
adjectival modifier of an noun phrase containing “pig”. A
typed dependency may represent the dependent relations
between two syntactic elements, not limited to words only.

The typed dependencies in a sentence can be represented
as a graph. For example, Figure 2 shows the typed depen-
dency relations for the same sentence shown in Figure 1.
We explain the relations appeared in Figure 2 from left
to right: the nominal subject relation, nsubj(martin, it),
means that “it” is the syntactic subject of the clause (same is
nsubj(pig,you)); the copula relation, cop(martin, is), means
that “martin” is the complement of verb “is” (same is cop(pig,
are)); the noun compound modifier, nn(martin, aston), means
that the noun “aston” serves to modify the head noun “mar-
tin”; the determiner, det(pig,a), means that “the” is a de-
terminer of “pig”; the adjectival modifier, amod(pig,crying),
means that “crying” serves as adjectival modifier of “pig”;
and the conjunct, conj and(martin, pig), means that the
coordinating conjunction “and” is used to connect two ele-
ments with head “martin” and “pig”, respectively.

4.1.3 Relation Tree (RelTree)
Both Part-of-Speech and typed dependency relations are

utilized in the second step estimation. The parse tree shows
the sentence syntactic organization and typed dependency
relations provide semantic information among words. To
combine both information, we propose a new data structure
called RelTree.

In a RelTree, as shown in Figure 3, the leaf nodes are
words in the sentence. And the non-leaf node represents
either a phrase or a clause inside the sentence. In each non-
leaf node, we associate the set of typed dependency relations
on the words within its subtree. Each node only contains
the typed dependency relations which have not appeared in
its subtree nodes.

The RelTree data structure is proposed only for the con-
venience of offensiveness estimation in the next step. Algo-
rithm 2 shows the algorithm for RelTree construction. With
the parse tree &.0## given, the computational complexity of
algorithm 20#*)#3#4.0## relies on the post-order traversal
and the search in TDset. As the number of relations never
exceeds >(> −1)/2, where > is the number of words in the
sentence, the computational complexity is '(>3). The com-
putational complexity itself is acceptable. Indeed, there are
a lot of ways to improve the efficiency in the implementation
of this algorithm.

4.2 Step Two: Bottom-up Estimation

Figure 3: A RelTree combining the parse tree and
typed dependency relations

input : a parse tree &.0##,
a set of typed dependency relations ./"#)

output: a RelTree 3#4.0##

3#4.0##← &.0##;1

Remove all word nodes in 3#4.0##;2

Traverse 3#4.0## in =1")10<#0 foreach node -3

visited do
if - is a leaf node then4

n.wordset ← {n};/*create word nodes*/5

end6

if - is not a leaf node then7

n.wordset ← ∅;8

foreach direct child node $# do9

-.A10<"#)← -.A10<"#) ∪ $#.A10<"#);10

-.0#4← ∅;11

foreach relation .#(B#, /#) in ./"#) do12

if B# ∈ -.A10<"#) and13

/# ∈ -.A10<"#) then
-.0#4← -.0#4 ∪ .#(B#, /#);14

./"#)← ./"#)− .#(B#, /#);15

end16

end17

end18

end19

end20

Return 3#4.0##;21

Algorithm 2: create a RelTree using the parse tree
and typed dependency relations

In the second step, we first use the offensive lexicon to
identify offensive words in the sentence. The leaf node with
an offensive word will be labeled as “removable”. Starting
from leaf nodes, we perform bottom-up estimation through
a postorder traversal on the RelTree.

For each non-leaf node in the RelTree, we estimate whether
it should be removed based on (1) the associated typed de-
pendency relations and (2) its child nodes within its subtree.
If a non-leaf node is estimated to be “removable”, all its de-
scendants, including words, within its subtree will also be
labeled as “removable”. The meaning of “removable” to
a non-leaf node is that all words, phrases, or even clauses
within its subtree have been determined to be removed at
the end of filtering. The estimation process includes two
steps. We first estimate based on typed dependency rela-
tions, and then apply a set of heuristic rules as complements.

4.2.1 Estimation with Typed Dependency Relations
Consider a non-leaf node - in a RelTree with a set -.0#4

of typed dependency relations. Each relation describes a se-
mantic connection between a +1;#0-10 word and a <#=#-<#-)
word. Both words are leaf nodes in the subtree rooted at
-. -.0#4 could be empty when - only has one child node.
For each typed dependency relation in -.0#4, we study its
semantic information and map it to an estimation function
we defined. There are totally 55 typed dependency relations
defined in [6], and we map each of them to one estimation
function. We show all the mappings in Table 2.

These estimation functions and mapping are created fol-
lowing the Modification Relation and Pattern Integrity rules.
Take the Direct Object (dobj) relation for example. In [6],
the dobj(G, D) relation is defined as : the direct object
of a verb phrase, containing governor word B, is the noun
phrase, containing dependent word /. For example, in
a relation <1:C(A,-,!*)$ℎ), “win” is the governor word
and “match” is the dependent word. According to Pat-
tern Integrity rule, we know that “Subject-Verb-Object” is
a basic pattern. Therefore, if either the phrase with B or
phrase with/ will be removed because of offensiveness, both
phrases should be removed together.

To formalize, we define an estimation function H(T) =
H(P(G)) OR H(P(D)) and map relation <1:C(B,/) to it.
We use symbol 2(B) and & (B) to denote the clause and
phrase containing word G as head, respectively. In this esti-
mation function, E(.) is the label to be assigned to relation
. and E(& (B)) is the label with phrase node containing B
in the RelTree. For example, in Figure 3,& (*")1-) is the
>& node of “aston martin”, and 2(*")1-) is the clause (i.e.
() node of “it is aston martin.”. The relation <1:C will be
labeled as “removable” if at least one of these two phrases
are labeled as “removable”.

Using the estimation function, we generate a label for ev-
ery relation associated with node - and then for the node
itself. If a relation . (B,/) of node - is estimated and la-
beled as “removable”, the two child nodes of -, containing
word B and word /, will be labeled as “removable”. If all
relations in -.0#4 are labeled as “removable”, the node - as
well as all its descendants, will be labeled as “removable”.

4.2.2 Estimation with Heuristic Rules
Through experiments on YouTube dataset, we realize that

filtering with typed dependency relations may not be enough.
Heuristic rules must be applied as complement after typed
dependency relation estimation. Applying heuristic rules is
necessary mainly because of two reasons. First of all, the
typed dependency relation contains some syntactic informa-
tion but limited. For example, the possessive ending (i.e.
&'() tag , which is a quite popular Part-of-Speech tag, is
ignored during the typed dependency tagging.

Secondly, not all relations between syntactic elements in
a sentence can be classified into one of typed dependency
relations defined in [6]. For those uncertain relations, [6] de-
fines a generic grammatical relation, named <#=. To prevent
confusion to filter, in the Table 2, we include <#= into the
Rule H(T) = H(G) AND H(D) which means either B or /
is labeled removable will not affect each other and the label
of . . Because <#= relation stands for uncertain relation, we
have to rely on Part-of-Speech tags in the RelTree for our
filtering.

We present several examples of heuristic rules applied in

Figure 4: Estimate a RelTree in a bottom-up man-
ner

semantic filtering in Table 3. Take the $1-C tag node rule
as an example. The conjunct relation ($1-C) is a type of
relation between two syntactic elements connected by a co-
ordinating conjunction, such as “and”. The parameters of
$1-C do not include the coordinating conjunction. However,
explicitly, the coordinating conjunction sits between the two
parameters of $1-C. If one side is determined removable, the
coordinating conjunction should be removed as well. For ex-
ample, in the sentence “I like A and B”, if either F or 6 is
removed, the coordinating conjunction “*-<” should also be
removed.

4.2.3 Estimation Algorithm
To estimate and assign labels for all nodes in a RelTree,

we perform the estimation also in a bottom-up manner. Fig-
ure 4 shows an example estimation process. The number in
the circle represents the order of estimation for each node
in the RelTree. The dashed nodes are estimated as “remov-
able”. For example, the clause node with nsubj(pig, you)
is estimated as “removable” according to the estimation.
Therefore, its two child nodes containing “pig” and “you”
respectively are both labeled as “removable”. Moreover, the
word “and” is removable according to the heuristic rule (i.e.
conj tag node rule), in order to keep the filtering transparent
to readers. Finally, inoffensive words, “you”, “are”, and “a”,
are removed with two offensive words, “crying” and “pig”,
in the filtering.

According to Algorithm 2, each typed dependency rela-
tion will appear exactly once in the RelTree. No relation
will be checked repeatedly in the estimation. The cleaned
sentence after filtering in this example will be “it is aston
martin.”. As we can see, the result satisfies the requirement
of our proposed filtering philosophy. Only the offensive part,
“you are a crying pig”, is removed. The reader can still get
the inoffensive information. The detailed algorithm for esti-
mation process is presented in Algorithm 3.

5. APPLICATIONS
The proposed semantic filtering approach can be applied

in real-world applications. In this section, we present two
types of applications for demonstration. One application is
at administrator side where the semantic filtering approach
can help administrators to automatically remove offensive
language in text messages submitted by users. The other
application is at browser side where we implement the se-
mantic filter as a Firefox extension for parental control.

Table 2: The mapping between typed dependency relations and estimation functions. (please see Section
4.2.1 for the definition of notations)

Index Estimation Function Typed Dependency Relation
1 H(T) = H(P(G)) cop, expl, measure, partmod, poss, possessive, preconj , prep/prepc,

purpcl , quantmod, rcmod, ref , tmod;
2 H(T) = H(P(D)) pcomp, pobj , predet;
3 H(T) = H(C(G)) complm, mark, rel;
4 H(T) = H(P(G)) OR H(C(D)) xcomp;
5 H(T) = H(C(G)) OR H(P(D)) xsubj;
6 H(T) = H(G) OR H(P(D)) nsubj, nsubjpass;
7 H(T) = H(G) AND H(D) conj, nn, number, dep;
8 H(T) = H(G) aomp, advcl, advmod, agent, amod, appos, attr, aux, auxpass, cc,

ccomp, det, neg, num, parataxis, punct;
9 H(T) = H(G) OR H(C(D)) csubj, csubjpass;
10 H(T) = H(P(G)) OR H(P(D)) abbrev, dobj, infmod, iobj, prt;

Table 3: Examples of heuristic rules applied in the proposed semantic filtering
Index Name Rules
1 POS tag node rule IF {its previous noun is removable} THEN {POS tag node will be removable}
2 conj tag node rule IF {both neighbor nodes are removable} THEN {conjunction node will be removable}
3 ADVP-VP rule IF {the current non-leaf node has only two child nodes; one is ADVP node and the other is VP

node} THEN { IF {ADVP node is removable} THEN {VP node will not be affected}; IF {VP
node is removable} THEN {ADVP node will also be removable}; }

input : a RelTree RelTree,
a blacklist of offensive words 64*$74,"),

output: a labeled RelTree LebelRelTree

8#:#43#4.0##← 3#4.0##;1

Label all leaf nodes with offensive words by2

“removable” in 8*:#43#4.0## ;
Traverse 8*:#43#4.0## in =1")10<#0 foreach node3

- visited do
if - is a leaf node then4

ignore; /* already labeled */5

end6

if - is not a leaf node then7

if - only has one child node then8

-.4*:#4← -.$ℎ,4<.4*:#4;9

end10

if - has more than one child node then11

Estimate the label for - by its associated12

labels, using proposed estimation
function and heuristic rules;

end13

end14

end15

Return 8*:#43#4.0##;16

Algorithm 3: estimate nodes in RelTree

5.1 Semantic Filter for Administrators in On-
line Communities

When a user wants to post a text message, he has to first
send the message to the server and let the server post this
message so that other users can see it. Therefore, one im-
portant place to eliminate offensive language in online com-
munities is at the server of online communities. Many online
communities have deployed sensor tools, such as swear fil-
ter in the World of Warcraft, to detect and remove sensitive

words, including offensive words. However, as we shown
in Section 2, filtering without considering semantics of text
message turns out to be ineffective to fight against offensive
language.

To a server side filtering tool, three metrics are most im-
portant to measure its performance: effectiveness, accuracy,
and speed. For effectiveness, we already show the advantage
of applying semantic filtering in Section 2. For accuracy
and speed, we have implemented an offensive language fil-
ter in Java using the proposed semantic filtering approach.
Stanford parser [2] is adapted to perform the Part-of-Speech
tagging and generate the typed dependency relations.

In the following subsections, we first present the details
about our collected YouTube dataset, and then present the
results of our experiments.

5.1.1 YouTube Dataset
YouTube is a leading video sharing website in the world.

Videos on YouTube websites are classified into 15 categories,
such as Comedy, Entertainment, and Music. For each video
webpage, contents contributed by users include the video for
viewing, video title, video author ID, video description, and
a list of text comments. Each text comment is associated
with a user ID and a piece of text content. User ID identifies
the author who generates this comment, and text content
contains the body of user’s opinion. Our filtering focuses on
the text content of text comments.

To build the dataset, we collected text comments from
video webpages on YouTube website in the days between
September 27 and September 29, 2009. For each of 15 cate-
gories, we collected the top 20 “most discussed” video web-
pages ranked in “this week”. For each webpage, we collected
the first 40 text comments. The dataset contains 11670
text comments in total. For each text comment, we did
manual filtering for each sentence in the comment. Specif-
ically, the manual filtering process includes three steps. In

the first step, we read the comment and chunk it into sen-
tences. Then, we identified the offensive words appearing
in the sentence. Finally, for each offensive word, we marked
the least set of words that should be removed together with
it in order to eliminate the offensive information. We as-
sign the collected YouTube dataset to five students for sep-
arate manual filtering. According to the results, 1739 text
comments contain offensive words. Within these comments,
2063 sentences contain offensive words and the total number
of unique offensive words appeared is 368.

During the manual filtering, one key question is how to
identify offensive words. The same as in [3], the knowl-
edge about offensive language in our case is represented by
a lexicon of offensive words. All words in this lexicon have
been determined to be offensive and should be prevented
from being seen by readers. To estimate a word, our judg-
ment is based on a list of offensive words provided by [1] and
the word’s meaning listed in the Urban Dictionary website7.
All offensive words we detected are determined as offensive
words by these two.

5.1.2 Accuracy
The results of both semantic filtering and manual filtering

on a sentence will be in one of three types.

∙ “Clean”: if there is no offensive word in the sentence;
∙ “Semantic Removing”: there exist offensive words in

the sentence and some inoffensive words have to be
removed together with those offensive words;

∙ “Keyword Removing only”: there exist offensive words
in the sentence and removing those offensive words
would be enough for the filtering.

To compare and measure the accuracy, we apply our pro-
posed semantic filtering approach to process all comments
collected in the YouTube dataset, and compare the result
with the manual filtering result on the dataset. We assume
that the manual filtering result represents the optimal filter-
ing result we want to achieve. To understand the difference
between the filtering result by human and by our filter, we
manually compare the results of both filtering, sentence by
sentence. The comparison outputs three types of results:

∙ if words removed by semantic filtering are exactly the
same as those chosen by manual filtering, we call it
“Correct Filtering”;

∙ if more words are removed by semantic filtering than
manual filtering, we call it “Excessive Filtering”;

∙ if fewer words are removed by semantic filtering than
manual filtering, we call it “Insufficient Filtering”;

Excessive filtering means that there are unnecessary words,
carrying inoffensive information, being falsely removed. In-
sufficient filtering means that filtering is not thorough.

According to our comparison, with 2063 sentences con-
taining offensive words, the number of insufficient filtering
is 58 (i.e. 2.81%), and the number of excessive filtering is
129 (i.e. 6.25%). To sum up, the overall ratios of accuracy
of our implemented semantic filter is 90.94%.

Through reviewing the results, three reasons are responsi-
ble for the inaccuracy, which are Informal English Writing,
Incorrect Part-of-Speech tagging, and Incorrect Typed De-
pendency Analysis.
7Urban Dictionary, at http://www.urbandictionary.com/

Informal English Writing is a character of language
in the online community. People would like to write text
comments on a casual or conversational tone, even with a
lot of spelling errors. Luckily, our goal is not to understand
the meaning of sentences but the relations among words. In
the experiments, we apply the unlexicalized PCFG parser [7]
proposed by Stanford NLP group and our results show some
resistance to certain informal writings. For example, for
word misuse case, in the Part-of-Speech tags generated from
sentence “I like to apple you.”, “apple” will be correctly
tagged with as a verb. Another example, for misspelling
case, the sentence of “I like to eat apple.” and “I like to ea
app.” outputs the same Part-of-Speech tagging during our
experiments. This is an important reason why we can still
achieve such a high overall accuracy mentioned above.

However, piling up several sentences casually without us-
ing any delimiters, such as “.”, “!”, “?”, will make it difficult
for the parser to generate correct Part-of-Speech tags and
typed dependency relations. Moreover, misspelling of cer-
tain sensitive words will confuse the parser (even human).
For example, in some text comment, “your” is used to stand
for “you’re”. There is no way for us to tell that.
Incorrect Part-of-Speech tagging contributes to 69.5%

of incorrect filtering results. The major reason of incorrect
tagging is caused by false sentence segmentation. In our
experiments, we use the default sentence splitter provided
by Stanford parser. Because typed dependency relations
are generated based on the result of Part-of-Speech tagging,
the incorrect tagging will certainly lead to incorrect filter-
ing result. For example, many incorrect tagging cases are
caused by arbitrarily inserting phrases in the pattern of “you
ABCD” in a sentence. “ABCD” usually is a noun phrase
or adjective phrase. Because “you” is a sensitive words in
tagging, this can easily confuse the Stanford Parser.
Typed dependency analysis could be incorrect, even

based on correct Part-of-Speech tagging. Especially, when
the relation is uncertain, Stanford parser tends to assign
a “dep” relation which basically means every thing could
be possible. In some cases, we can apply heuristic rules
mentioned in Section 4.2.2 as complement.

5.1.3 Speed
The processing speed on masses of text messages is im-

portant for filtering offensive language in real online commu-
nities. For our proposed filter, the time consuming part of
filtering is the Part-of-Speech tagging and typed dependency
relation generation parts. To measure the time efficiency of
the implemented filter, we measure the speed in two cases:
one is a normal case and the other is a high-overload case.
In the normal case, we use the filter to process all text com-
ments in the collected YouTube dataset. These comments
contain both offensive comments and inoffensive comments.
In the overload case, we apply the filter on offensive com-
ments only. As the dataset is stored in files on local disk
and each webpage is stored in a separate file, the measured
processing time includes that for file I/O operations.

The time cost in each case for processing the same number
of comments is listed in Figure 5. In both cases, the time
cost increases almost linearly. In the high-overload case, the
time cost is about 231.3 !"#$ per comment. In the normal
case, the time cost increases much slower because a lot of
comments processed are inoffensive comments. For those
inoffensive comments, no grammatical analysis is needed.

0 300 600 900 1200 1500 1739
0

0.5

1

1.5

2

2.5

3

3.5

4
x 105

Number of Comment Processed

Ti
m

e
C

os
t (

in
 m

ill
ise

co
nd

)

High OverLoad Case
Normal Case

Figure 5: Measurement of Filtering Time Cost in
Two Cases

Therefore, the average speed is much faster, about 38.6!"#$
per comment.

5.2 Firefox Extension for Parental Control
We also implemented the semantic filter as a Firefox ex-

tension which can be embedded into Firefox browser to filter
offensive language in OSN websites. Briefly, our extension
consists of three modules, which are Pre-processor, Text An-
alyzer, and Post-processor. The Pre-processor module is de-
signed for content extraction. After receiving original web-
page (e.g., a HTML file) from a website, it decomposes the
content of a webpage and extract its text content posted by
community members. The Text Analyzer module applies
the proposed semantic filtering approach to filter the offen-
sive language in the text content (Here we are interested
in user messages). And the Post-processor module modifies
the original webpage based on the results of filtering before
showing the webpage in the browser.

The biggest challenge to implement the extension is to
understand the structure of a webpage, because we are only
interested in text contents that are contributed by members
of online communities. Admittedly, to segment and label the
text content inside HTML elements of a random webpage
on Internet is still an open problem. Luckily, OSN websites
usually have neat and fixed template for their webpages,
such as YouTube, MySpace, and Facebook. All webpages
in an OSN website share a limited number of templates.
Users have no control over the structure of webpages. For
example, if a user wants to post a comment on his friend’s
blog, he has to first send the text to the website and the
website will update his friend’s blog with submitted texts.

Based on this observation, we employ the Document Ob-
ject Model (DOM) to extract the text content we are in-
terested in. Each HTML webpage maps to a DOM tree
where tags are internal nodes and the actual text, images
or hyperlinks are the leaf nodes. For example, Figure 6
shows a comment with its corresponding fragments in the
DOM tree. As we can see from Figure 6, in all webpages on
YouTube website, comment body is within the subtree with
the “watch-comment-body” tag. Situation is the same in
other OSN websites. So far, we have considered extracting
templates from websites, such as YouTube, Google Search,
MySpace blog, Facebook, and Twitter. For example, every
user status update on Twitter’s post wall is within a node
tagged by “entry-content”.

Figure 6: A YouTube comment and its correspond-
ing DOM tree fragment

Figure 7: Comparison between YouTube filter and
our semantic filter with partial offensive sentences

To demonstrate the effectiveness of semantic filtering with
Firefox extension, we show a comparison of filtered results
between our Firefox extension and YouTube’s default filter
(i.e. the “Hide objectionable words” function), in Figures 7
and 8. For better viewing, we put red lines at places with
differences. As we can see from this comparison, the reader
can easily guess the word filtered by YouTube’s default fil-
ter. With proposed semantic filtering approach, we provide
a “transparent” filtering. In these two cases, we are able
to thoroughly remove the offensive parts while keeping the
inoffensive part as much as possible.

We have also evaluated the speed of filtering ordinary
video webpages on YouTube websites. During the evalua-
tion, we select top 50 most “popular” videos in “This Week”
and records the time cost for processing each webpage. Each
webpage contains 10 user comments. According to the ex-
periments, the minimum time cost for processing one web-
page is 43 !"#$ and the maximum is 2839 !"#$. The dif-
ference of time cost depends on the amount of text as well
as the offensive words in the webpage. The mean of pro-
cessing time is about 752 !"#$, 50% webpages requires less
than 431 !"#$ filtering time, and 75% webpages requires

Figure 8: Comparison between YouTube filter and
our semantic filter with absolute offensive sentences

less than 1211 !"#$.

6. LIMITATIONS AND COUNTERMEASURES
We now discuss (1) several limitations associated with

our semantic filtering approach as well as a few possible
ways offender may evade it, and (2) possible countermea-
sures against those evasions.

6.1 Offensive Language Detection
In this paper, we made an assumption that all offen-

sive opinions are expressed by offensive words and we have
a comprehensive offensive lexicon containing all offensive
words. Based on this assumption, we adopt a simple word
matching approach to identify offensive words in the sen-
tence to be filtered. This assumption is made because the fo-
cus of our paper is about offensive language filtering instead
of detection. Since our filtering approach depends on detec-
tion of offensive language, the filtering might fail if offensive
language cannot be detected before the filtering process. To
avoid filtering, offender may try to evade the offensive lan-
guage detection mechanisms. For detection, there are many
literatures discussing about detecting offensive language in
sentence level [3] or message level [10]. For offensive lexi-
con generation, [9] presents a study. We believe offensive
language detection a very challenging problem worthy of
separate treatment.

6.2 Nature Language Process
The language used in online communities has its own char-

acteristics, compared to the language used in Journal and
newspaper. When applying NLP techniques, people would
worry about the accuracy because of such characteristics as
casual and informal English writing style. As we mentioned
in Section 5.1.2, we did notice the inaccuracy brought by
inaccurate text analysis. On the other hand, we discovered
that language in online communities also has many charac-
ters suitable for text analysis. First of all, compared with
articles or journals, most text messages posted are usually
very short. A typical example is the !,$01 − :41++,-+ ser-
vice provided by Twitter8 which allows users to send brief
text updates (less than 140 characters).

Secondly, most text messages use spoken English which
has very simple and neat grammatical structures, making it
easy to achieve high accuracy in text analysis. This phe-
nomenon is also called self-identity in social psychology. It
states that people actually like to make comments as simple
and clear as possible so that readers can understand his/her
opinion easily. In our case, self-identity makes the offensive
comment easier to filter. If the comment is hard to analyze
by a parser, it will probably cause difficulty to its human
readers as well.

6.3 Changes to User Message
One concern about the proposed semantic filtering is the

change made to the original text message. Admittedly, re-
moving words from original message may cause information
loss. Consider the information carried by original user mes-
sage as % = %#$!"" + %!"" . During the filtering, offensive
information %!"" is okay to be removed, but the inoffensive
information %#$!"" should not be deleted or altered.

8Twitter, at http://twitter.com

In semantic filtering, we are fully aware of the impact
of filtering. As stated in the proposed “filtering instead of
blocking” philosophy, the semantic filtering only removes the
smallest semantic part which containing offensive words in
the sentence. Meanwhile, the readability of filtered sentence
will be kept, making filtering transparent to user. Taking
manual filtering as the standard, we demonstrate the ability
to achieving close results by comparison in experiments.

7. CONCLUSION
Offensive language is a serious problem facing the online

community. In this paper, we proposed a semantic filtering
technique based on the grammatical relations of words in a
sentence so that the rest of the filtered sentence is readable
and the existence of offensive words in the original sentence
is hard to notice. We tested the effectiveness of our approach
with a large dataset and the results show that our techniques
are very effective and accurate with little process overhead.

Our future work includes looking at the issues described in
the discussion section. Moreover, as the most time-consuming
part of semantic filtering is the sentence parsing process, we
will examine other light-weighted NLP techniques to speed
up sentence parsing. Last but not the lease, we also plan
to extend our filtering approach to support other languages
such as Chinese and French.

8. REFERENCES
[1] Bad word list and swear filter. Available:

http://www.noswearing.com/list.php.
[2] The stanford parser: A statistical parser.

Available:http://nlp.stanford.edu/software/lex-
parser.shtml.

[3] M. K. Altaf Mahmud, Kazi Zubair Ahmed. Detecting
flames and insults in text. In Proceedings of 6th
International Conference on Natural Language
Processing, 2008.

[4] A. Bies, M. Ferguson, K. Katz, R. Macintyre,
M. Contributors, V. Tredinnick, G. Kim, M. A.
Marcinkiewicz, and B. Schasberger. Bracketing
Guidelines for Treebank II Style Penn Treebank
Project, 1995.

[5] J. Cheng. Report: 80 percent of blogs contain
”offensive” content. ars technica, 2007.

[6] M.-C. de Marneffe and C. D. Manning. Stanford typed
dependencies manual, 2008.

[7] D. Klein and C. D. Manning. Accurate unlexicalized
parsing. In Proceedings of the 41st Annual Meeting on
Association for Computational Linguistics, 2003.

[8] H. Rheingold. The virtual community : Homesteading
on the electronic frontier. Reading, Massachusetts:
Addison-Wesley Publishing Company, 1993.

[9] J. Sjbergh and K. Araki. A multi-lingual dictionary of
dirty words. In Proceedings of the 6th International
Conference on Language Resources and Evaluation,
2008.

[10] E. Spertus. Smokey: Automatic recognition of hostile
messages. In Proceedings of the 9th Conference on
Innovative Application of AI, 1997.

