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A new method for automatic indexing and retrieval is 
described. The approach is to take advantage of implicit 
higher-order structure in the association of terms with 
documents (“semantic structure”) in order to improve 
the detection of relevant documents on the basis of 
terms found in queries. The particular technique used is 
singular-value decomposition, in which a large term by 
document matrix is decomposed into a set of ca. 100 or- 
thogonal factors from which the original matrix can be 
approximated by linear combination. Documents are 
represented by ca. 100 item vectors of factor weights. 
Queries are represented as pseudo-document vectors 
formed from weighted combinations of terms, and 
documents with supra-threshold cosine values are re- 
turned. initial tests find this completely automatic 
method for retrieval to be promising. 

Introduction 

We describe here a new approach to automatic indexing 
and retrieval. It is designed to overcome a fundamental 

problem that plagues existing retrieval techniques that try 
to match words of queries with words of documents. The 

problem is that users want to retrieve on the basis of con- 
ceptual content, and individual words provide unreliable 
evidence about the conceptual topic or meaning of a docu- 
ment. There are usually many ways to express a given 
concept, so the literal terms in a user’s query may not 
match those of a relevant document. In addition, most 
words have multiple meanings, so terms in a user’s query 
will literally match terms in documents that are not of in- 
terest to the user. 

The proposed approach tries to overcome the deficien- 
cies of term-matching retrieval by treating the unreliability 
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of observed term-document association data as a statistical 
problem. We assume there is some underlying latent se- 
mantic structure in the data that is partially obscured by the 
randomness of word choice with respect to retrieval. We 
use statistical techniques to estimate this latent structure, 
and get rid of the obscuring “noise.” A description of 
terms and documents based on the latent semantic structure 
is used for indexing and retrieval.’ 

The particular “latent semantic indexing” (LSI) analysis 
that we have tried uses singular-value decomposition. We 
take a large matrix of term-document association data and 
construct a “semantic” space wherein terms and documents 
that are closely associated are placed near one another. 
Singular-value decomposition allows the arrangement of 
the space to reflect the major associative patterns in the 
data, and ignore the smaller, less important influences. As 
a result, terms that did not actually appear in a document 
may still end up close to the document, if that is consistent 
with the major patterns of association in the data. Position 
in the space then serves as the new kind of semantic index- 
ing. Retrieval proceeds by using the terms in a query to 
identify a point in the space, and documents in its neigh- 
borhood are returned to the user. 

Deficiencies of Current Automatic Indexing and 
Retrieval Methods 

A fundamental deficiency of current information retrieval 
methods is that the words searchers use often are not the 
same as those by which the information they seek has been 
indexed. There are actually two sides to the issue; we will 
call them broadly synonymy and polysemy. We use syn- 
onymy in a very general sense to describe the fact that 

‘By “semantic structure” we mean here only the correlation structure 
in the way in which individual words appear in documents; “semantic” 
implies only the fact that terms in a document may be taken as referents 
to the document itself or to its topic. 
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there are many ways to refer to the same object. Users in 
different contexts, or with different needs, knowledge, or 
linguistic habits will describe the same information using 
different terms. Indeed, we have found that the degree of 
variability in descriptive term usage is much greater than is 
commonly suspected. For example, two people choose the 
same main key word for a single well-known object less than 
20% of the time (Furnas, Landauer, Gomez, & Dumais, 
1987). Comparably poor agreement has been reported in 
studies of interindexer consistency (Tarr & Borko, 1974) 
and in the generation of search terms by either expert inter- 
mediaries (Fidel, 1985) or less experienced searchers (Liley, 
1954; Bates, 1986). The prevalence of synonyms tends to 
decrease the “recall” performance of retrieval systems. By 
polysemy we refer to the general fact that most words have 
more than one distinct meaning (homography). In different 
contexts or when used by different people the same term 

(e.g., “chip”) takes on varying referential significance. 
Thus the use of a term in a search query does not neces- 
sarily mean that a document containing or labeled by the 
same term is of interest. Polysemy is one factor underlying 
poor “precision .” 

The failure of current automatic indexing to overcome 
these problems can be largely traced to three factors. The 
first factor is that the way index terms are identified is in- 
complete. The terms used to describe or index a document 
typically contain only a fraction of the terms that users as a 
group will try to look it up under. This is partly because the 
documents themselves do not contain all the terms users 
will apply, and sometimes because term selection proce- 
dures intentionally omit many of the terms in a document. 

Attempts to deal with the synonymy problem have re- 
lied on intellectual or automatic term expansion, or the 
construction of a thesaurus. These are presumably advanta- 
geous for conscientious and knowledgeable searchers who 
can use such tools to suggest additional search terms. The 
drawback for fully automatic methods is that some added 
terms may have different meaning from that intended (the 
polysemy effect) leading to rapid degradation of precision 
(Sparck Jones, 1972). 

It is worth noting in passing that experiments with small 
interactive data bases have shown monotonic improvements 
in recall rate without overall loss of precision as more in- 
dexing terms, either taken from the documents or from 
large samples of actual users’ words are added (Gomez, 
Lochbaum, & Landauer, in press; Fumas, 1985). Whether 
this “unlimited aliasing” method, which we have described 
elsewhere, will be effective in very large data bases re- 

TABLE 1. Sample term by document matrix.” 

mains to be determined. Not only is there a potential issue 
of ambiguity and lack of precision, but the problem of 
identifying index terms that are not in the text of docu- 
ments grows cumbersome. This was one of the motives for 
the approach to be described here. 

The second factor is the lack of an adequate automatic 
method for dealing with polysemy. One common approach 
is the use of controlled vocabularies and human inter- 
mediaries to act as translators. Not only is this solution 
extremely expensive, but it is not necessarily effective. 
Another approach is to allow Boolean intersection or coor- 
dination with other terms to disambiguate meaning. Suc- 
cess is severely hampered by users’ inability to think of 
appropriate limiting terms if they do exist, and by the fact 

that such terms may not occur in the documents or may not 
have been included in the indexing. 

The third factor is somewhat more technical, having 
to do with the way in which current automatic indexing 
and retrieval systems actually work. In such systems each 
word type is treated as independent of any other (see, for 
example, van Rijsbergen (1977)). Thus matching (or not) 
both of two terms that almost always occur together is 
counted as heavily as matching two that are rarely found in 

the same document. Thus the scoring of success, in either 
straight Boolean or coordination level searches, fails to 
take redundancy into account, and as a result may distort 

results to an unknown degree. This problem exacerbates a 
user’s difficulty in using compound-term queries effec- 
tively to expand or limit a search. 

Rationale of the Latent Semantic Indexing 
(LSI) Method 

Illustration of Retrieval Problems 

We illustrate some of the problems with term-based in- 
formation retrieval systems by means of a fictional matrix 

of terms by documents (Table 1). Below the table we give 
a fictional query that might have been passed against this 
database. An “R” in the column labeled REL (relevant) in- 
dicates that the user would have judged the document rele- 

vant to the query (here documents 1 and 3 are relevant). 
Terms occurring in both the query and a document (com- 
puter and information) are indicated by an asterisk in the 
appropriate cell; an “M” in the MATCH column indicates 
that the document matches the query and would have been 
returned to the user. Documents 1 and 2 illustrate common 
classes of problems with which the proposed method 

Access Document Retrieval Information Theory Database Indexing Computer REL MATCH 

Dot 1 x X x x X R 
Doc2 x* X x* M 
Doc3 X X* X* R M 

“Query: “IDF in computer-based information look-up” 
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deals. Document 1 is a relevant document, which, how- 
ever, contains none of the words in the query. It would, 
therefore, not be returned by a straightforward term over- 
lap retrieval scheme. Document 2 is a nonrelevant docu- 
ment which does contain terms in the query, and therefore 
would be returned, despite the fact that the query context 
makes it clear enough to a human observer that a different 
sense of at least one of the words is intended. Note that in 
this example none of the meaning conditioning terms in the 
query is found in the index. Thus intersecting them with 
the query terms would not have been a plausible strategy 
for omitting document 2. 

Start by considering the synonymy problem. One way 
of looking at the problem is that document 1 should have 
contained the term “look-up” from the user’s perspective, 
or conversely that the query should have contained the 
term “access” or “retrieval” from the system’s. To flesh 
out the analogy, we might consider any document (or title 
or abstract) to consist of a small selection from the com- 
plete discourse that might have been written on its topic. 
Thus the text from which we extract index terms is a fal- 
lible observation from which to infer what terms actually 
apply to its topic. The same can be said about the query; it 
is only one sample description of the intended documents, 
and in principle could have contained many different terms 

from the ones it does. 

Our job then, in building a retrieval system, is to find 
some way to predict what terms “really” are implied by a 
query or apply to a document (i.e., the “latent semantics”) 
on the basis of the fallible sample actually found there. If 
there were no correlation between the occurrence of one 
term and another, then there would be no way for us to use 
the data in a term by document matrix to estimate the 
“true” association of terms and documents where data are 
in error. On the other hand, if there is a great deal of struc- 
ture, i.e., the occurrence of some patterns of words gives 
us a strong clue as to the likely occurrence of others, then 
data from one part (or all) of the table can be used to cor- 
rect other portions. For example suppose that in our total 
collection the words “access” and “retrieval” each occurred 
in 100 documents, and that 95 of these documents contain- 
ing “access” also contained “retrieval.” We might reason- 
ably guess that the absence of “retrieval” from a document 

containing “access” might be erroneous, and consequently 
wish to retrieve the document in response to a query con- 
taining only “retrieval.” The kind of structure on which 
such inferences can be based is not limited to simple pair- 
wise correlation. 

In document 2 we would like our analysis to tell us that 
the term “information” is in fact something of an imposter. 
Given the other terms in the query and in that document 
we would predict no occurrence of a term with the mean- 
ing here intended for “information,” i.e., knowledge de- 
sired by a searcher. A correlational structure analysis may 
allow us to down-weight polysemous terms by taking ad- 
vantage of such observations. 

Our overall research program has been to find effective 
models for overcoming these problems. We would like a 

representation in which a set of terms, which by itself is 
incomplete and unreliable evidence of the relevance of a 
given document, is replaced by some other set of entities 

which are more reliable indicants. We take advantage of 
implicit higher-order (or latent) structure in the association 
of terms and documents to reveal such relationships. 

The Choice of Method for Uncovering Latent 
Semantic Structure 

The goal is to find and fit a useful model of the rela- 
tionships between terms and documents. We want to use 
the matrix of observed occurrences of terms applied to 
documents to estimate parameters of that underlying 
model. With the resulting model we can then estimate 
what the observed occurrences really should have been. In 
this way, for example, we might predict that a given term 
should be associated with a document, even though, be- 
cause of variability in word use, no such association was 
observed. 

The first question is what sort of model to choose. A 
notion of semantic similarity, between documents and be- 
tween terms, seems central to modeling the patterns of 
term usage across documents. This led us to restrict con- 
sideration to proximity models, i.e., models that try to put 
similar items near each other in some space or structure. 
Such models include: hierarchical, partition and overlap- 
ping clusterings; ultrametric and additive trees; and factor- 
analytic and multidimensional distance models (see Carroll 
& Arabie, 1980 for a survey). 

Aiding information retrieval by discovering latent prox- 
imity structure has at least two lines of precedence in the 
literature. Hierarchical classification analyses are fre- 
quently used for term and document clustering (Sparck 
Jones, 1971; Salton, 1968; Jardin & van Rijsbergen, 1971). 
Latent class analysis (Baker, 1962) and factor analysis 

(Atherton & Borko, 1965; Borko & Bemick, 1963; Ossorio, 
1966) have also been explored before for automatic docu- 
ment indexing and retrieval. 

In document clustering, for example, a notion of dis- 
tance is defined such that two documents are considered 
close to the extent that they contain the same terms. The 
matrix of document-to-document distances is then sub- 
jected to a clustering analysis to find a hierarchical classifi- 
cation for the documents. Retrieval is based on exploring 
neighborhoods of this structure. Similar efforts have ana- 
lyzed word usage in a corpus and built clusters of related 
terms, in effect making a statistically-based thesaurus. We 
believe an important weakness of the clustering approach 
is that hierarchies are far too limited to capture the rich se- 
mantics of most document sets. Hierarchical clusterings 
permit no cross classifications, for example, and in general 
have very few free parameters (essentially only n parameters 
for n objects). Empirically, clustering improves the com- 
putational efficiency of search; whether or not it improves 
retrieval success is unclear (Jardin & van Rijsbergen, 1971; 
Salton & McGill, 1983; Voorhees, 1985). 
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Previously tried factor analytic approaches have taken a 
square symmetric matrix of similarities between pairs of 
documents (based on statistical term overlap or human 
judgments), and used linear algebra to construct a low 
dimensional spatial model wherein similar documents are 

placed near one another. The factor analytic model has the 
potential of much greater richness than the clustering 
model (a k dimensional model for n points has nk parame- 
ters). However previous attempts along these lines, too, 
had shortcomings. First, factor analysis is computationally 
expensive, and since most previous attempts were made 
15-20 years ago, they were limited by processing con- 
straints (Borko & Bernick, 1963). Second, most past at- 
tempts considered restricted versions of the factor analytic 
model, either by using very low dimensionality, or by con- 
verting the factor analysis results to a simple binary clus- 
tering (Borko & Bernick, 1963). Third, some attempts 
have relied on excessively tedious data gathering tech- 
niques, requiring the collection of thousands of similarity 
judgments from humans (Ossorio, 1966). 

Previously reported clustering and factor analytic ap- 
proaches have also struggled with a certain representa- 
tional awkwardness. Typically the original data explicitly 
relate two types of entities, terms and documents, and 
most conceptions of the retrieval problem mention both 
types (e.g., given terms that describe a searchers’ inter- 
ests, relevant documents are returned). However, represen- 
tations chosen so far handle only one at a time (e.g., either 
term clustering or document clustering). Any attempts to 

put the ignored entity back in the representation have been 
arbitrary and after the fact. An exception to this is a pro- 
posal by Koll (1979) in which both terms and documents 
are represented in the same space of concepts (see also 
Raghavan & Wong (1986)). While Koll’s approach is quite 
close in spirit to the one we propose, his concept space 
was of very low dimensionality (only seven underlying 
dimensions), and the dimensions were hand-chosen and 
not truly orthogonal as are the underlying axes in factor 
analytic approaches.’ 

Our approach differs from previous attempts in a number 

of ways that will become clearer as the model is described 
‘in more detail. To foreshadow some of these differences, 
we: (1) examine problems of reasonable size (1000-2000 
document abstracts; and 5ooO-7000 index terms); (2) use a 
rich, high-dimensional representation (about 100 dimen- 
sions) to capture term-document relations (and this appears 
necessary for success); (3) use a mathematical technique 
which explicitly represents both terms and documents in 
the same space; and (4) retrieve documents from query 
terms directly, without rotation or interpretation of the 

underlying axes and without using intermediate docu- 
ment clusters. 

‘Koll begins with a set of seven nonoverlapping but almost spanning 
documents which form the axes of the space. Terms are located on the 
axis of the document in which they occur; the remainder of the doc- 
uments are processed sequentially and placed at the average of their 
terms. This approach has been evaluated on only a small dataset where it 
was moderately successful. 

We considered alternative models using the following 
three criteria: 

(1) 

(2) 

Adjustable representational richness. To represent the 

underlying semantic structure, we need a model with 
sufficient power. We believe hierarchical clusterings 
to be too restrictive, since they allow no multiple or 
crossed classifications and have essentially only as 
many parameters as objects. Since the right kind of 
alternative is unknown, we looked for models whose 
power could be varied, as some compensation for 

choosing a perhaps inappropriate structure. The most 
obvious class is dimensional models, like multidimen- 
sional scaling and factor analysis, where representa- 
tional power can be controlled by choosing the number, 
k, of dimensions (i.e., k parameters per object). 
Explicit representation of both terms and documents. 

The desire to represent both terms and documents 

simultaneously is more than esthetic. In our proximi- 

ty-based latent structure paradigm, retrieval proceeds 

by appropriately placing a new object corresponding 
to the query in the semantic structure and finding 
those documents that are close by. One simple way to 
achieve appropriate placement is if terms, as well as 

documents, have positions in the structure. Then a 

query can be placed at the centroid of its term points. 
Thus for both elegance and retrieval mechanisms, we 

needed what are called two-mode proximity methods 

(Carroll and Arabie, 1980), that start with a rectangu- 
lar matrix and construct explicit representations of 

both row and column objects. One such method is 

multidimensional unfolding (Coombs, 1964; Heiser, 
1981; Desarbo & Carroll. 1985), in which both terms 

and documents would appear as points in a single space 
with similarity related monotonically to Euclidean 
distance. Another is two-mode factor analysis (Harsh- 
man, 1970; Harshman & Lundy, 1984a; Carroll & 

Chang, 1970; Kruskal, 1978), in which terms and 
documents would again be represented as points in a 

space, but similarity is given by the inner product be- 
tween points. A final candidate is unfolding in trees 

(Fumas, 1980), in which both terms and documents 

would appear as leaves on a tree, and path length 
distance through the tree would give the similarity. 

(One version of this is equivalent to simultaneous hier- 
archical clustering of both terms and objects.) The 
explicit representation of both terms and documents 

also leads to a straightforward way in which to add or 
“fold-in” new terms or documents that were not in the 
original matrix. New terms can be placed at the cen- 
troid of the documents in which they appear; simi- 

larly, new documents can be placed at the centroid of 
their constituent terms.? 

‘There are several important and interesting issues raised by considering 
the addition of new terms and documents into the space. First, the addi- 
tion of new objects introduces some temporal dependencies in the repre- 
sentation. That is, where a new term or document gets placed depends on 
what other terms and documents are already in the space. Second, in gen- 
eral, simply folding-in new terms or documents will result in a somewhat 
different space than would have been obtained had these objects been in- 
cluded in the original analysis. Since the initial analysis is time consum- 
ing, it is clearly advantageous to be able to add new objects by folding-in. 
How much of this can be done without resealing is an open research 
issue, and is likely to depend on the variability of the database over time, 
the representativeness of the original of documents and terms, etc. 
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(3) Computational tractabiliv for large datasets. Many 
of the existing models require computation that goes 

up with N4 or N5 (where N is the number of terms 

plus documents). Since we hoped to work with docu- 
ments sets that were at least in the thousands, models 
with efficient fitting techniques were needed. 

The only mode1 which satisfied all three criteria was 
two-mode factor analysis. The tree unfolding mode1 was 
considered too representationally restrictive, and along with 
nonmetric multidimensional unfolding, too computationally 

expensive. Two-mode factor analysis is a generalization of 
the familiar factor analytic mode1 based on singular value 
decomposition (SVD). (See Forsythe, Malcolm, & Moler 
(1977), Chapter 9, for an introduction to SVD and its 
applications.) SVD represents both terms and documents 
as vectors in a space of choosable dimensionality, and 
the dot product or cosine between points in the space 
gives their similarity. In addition, a program was available 
(Harshman & Lundy, 1984b) that fit the model in time of 
order N2 X k’. 

SVD or Two-Mode Factor Analysis 

Overview 

The latent semantic structure analysis starts with a ma- 
trix of terms by documents. This matrix is then analyzed 
by singular value decomposition (SVD) to derive our par- 
ticular latent semantic structure model. Singular value de- 
composition is closely related to a number of mathematical 
and statistical techniques in a wide variety of other fields, 
including eigenvector decomposition, spectral analysis, 
and factor analysis. We will use the terminology of factor 
analysis, since that approach has some precedence in the 
information retrieval literature. 

The traditional, one-mode factor analysis begins with a 
matrix of associations between all pairs of one type of ob- 
ject, e.g., documents (Borko & Bernick, 1963). This 
might be a matrix of human judgments of document to 
document similarity, or a measure of term overlap com- 
puted for each pair of documents from an original term by 
document matrix. This square symmetric matrix is de- 
composed by a process called “eigen-analysis,” into the 
product of two matrices of a very special form (containing 
“eigenvectors” and “eigenvalues”). These special matrices 

show a breakdown of the original data into linearly inde- 
pendent components or “factors.” In general many of these 
components are very small, and may be ignored, leading 
to an approximate model that contains many fewer factors. 
Each of the original documents’ similarity behavior is now 
approximated by its values on this smaller number of 
factors. The result can be represented geometrically by a 
spatial configuration in which the dot product or cosine be- 
tween vectors representing two documents corresponds to 
their estimated similarity. 

In two-mode factor analysis one begins not with a square 
symmetric matrix relating pairs of only one type of entity, 

but with an arbitrary rectangular matrix with different enti- 
ties on the rows and columns, e.g., a matrix of terms and 

documents. This rectangular matrix is again decomposed 
into three other matrices of a very special form, this time 
by a process called “singular-value-decomposition” (SVD). 
(The resulting matrices contain “singular vectors” and 
“singular values.“) As in the one-mode case these special 
matrices show a breakdown of the original relationships 
into linearly independent components or factors. Again, 
many of these components are very small, and may be ig- 

nored, leading to an approximate model that contains many 
fewer dimensions. In this reduced model all the term-term, 
document-document, and term-document similarities are 
now approximated by values on this smaller number of 
dimensions. The result can still be represented geometri- 
cally by a spatial configuration in which the dot product or 
cosine between vectors representing two objects corre- 

sponds to their estimated similarity. 

Thus, for information retrieval purposes, SVD can be 
viewed as a technique for deriving a set of uncorrelated in- 
dexing variables or factors; each term and document is rep- 
resented by its vector of factor values. Note that by virtue 
of the dimension reduction, it is possible for documents 
with somewhat different profiles of term usage to be 
mapped into the same vector of factor values. This is just 
the property we need to accomplish the improvement of 
unreliable data proposed earlier. Indeed, the SVD repre- 
sentation, by replacing individual terms with derived or- 
thogonal factor values, can help to solve all three of the 
fundamental problems we have described. 

In various problems, we have approximated the original 
term-document matrix using 50-100 orthogonal factors or 
derived dimensions. Roughly speaking, these factors may 
be thought of as artificial concepts; they represent ex- 

tracted common meaning components of many different 

words and documents. Each term or document is then 
characterized by a vector of weights indicating its strength 
of association with each of these underlying concepts. That 
is, the “meaning” of a particular term, query, or document 
can be expressed by k factor values, or equivalently, by the 
location of a vector in the k-space defined by the factors. 
The meaning representation is economical, in the sense 
that N original index terms have been replaced by the 
k < N best surrogates by which they can be approximated. 
We make no attempt to interpret the underlying factors, 

nor to “rotate” them to some meaningful orientation. Our 
aim is not to be able to describe the factors verbally but 
merely to be able to represent terms, documents and 
queries in a way that escapes the unreliability, ambiguity 
and redundancy of individual terms as descriptors. 

It is possible to reconstruct the original term by docu- 
ment matrix from its factor weights with reasonable but 
not perfect accuracy. It is important for the method that the 
derived k-dimensional factor space not reconstruct the 
original term space perfectly, because we believe the origi- 
nal term space to be unreliable. Rather we want a derived 
structure that expresses what is reliable and important in 
the underlying use of terms as document referents. 
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Unlike many typical uses of factor analysis, we are not 
necessarily interested in reducing the representation to a 
very low dimensionality, say two or three factors, because 
we are not interested in being able to visualize the space or 
understand it. But we do wish both to achieve sufficient 
power and to minimize the degree to which the space is 
distorted. We believe that the representation of a concep- 

tual space for any large document collection will require 
more than a handful of underlying independent “concepts,” 
and thus that the number of orthogonal factors that will 
be needed is likely to be fairly large. Moreover, we be- 
lieve that the model of a Euclidean space is at best a use- 
ful approximation. In reality, conceptual relations among 

terms and documents certainly involve more complex struc- 
tures, including, for example, local hierarchies, and non- 
linear interactions between meanings. More complex 
relations can often be made to approximately fit a dimen- 
sional representation by increasing the number of dimen- 
sions. In effect, different parts of the space will be used 
for different parts of the language or object domain. Thus 

we have reason to avoid both very low and extremely high 
numbers of dimensions. In between we are guided only by 
what appears to work best. What we mean by “works best” 
is not (as is customary in some other fields) what repro- 
duces the greatest amount of variance in the original ma- 
trix, but what will give the best retrieval effectiveness. 

TABLE 2. A sample dataset consisting of the titles of nine technical 
memoranda. Terms occurring in more than one title are italicized. There 
are two classes of documents-five about human-computer interaction 
(~1~5) and four about graphs (ml-m4). This dataset can be described by 
means of a term by document matrix where each cell entry indicates the 
frequency with which a term occurs in a document. 

Technical Memo Example 

Titles 

cl: 
c2: 

c3: 

4: 

c5: 

ml: 
m2: 
m3: 
m4: 

Human machine interjuce for Lab ABC computer applications 
A survey of user opinion of computer sysrem response time 

The EPS user interface management system 

System and human system engineering testing of EPS 

Relation of user-perceived response time to error measurement 

The generation of random, binary, unordered trees 
The intersection graph of paths in trees 
Graph minors IV: Widths of trees and well-quasi-ordering 
Graph minors: A survey 

How do we process a query in this representation? Re- 
call that each term and document is represented as a vector 
in k-dimensional factor space. A query, just as a docu- 
ment, initially appears as a set of words. We can represent 
a query (or “pseudo-document”) as the weighted sum of its 
component term vectors. (Note that the location of each 
document can be similarly described; it is a weighted sum 
of its constituent term vectors.) To return a set of potential 
candidate documents, the pseudo-document formed from a 
query is compared against all documents, and those with 
the highest cosines, that is the nearest vectors, are re- 
turned. Generally, either a threshold is set for closeness of 
documents and all those above it returned, or the n closest 
are returned. (We are concerned with the issue of whether 
the cosine measure is the best indication of similarity to 
predict human relevance judgments, but we have not yet 
systematically explored any alternatives, cf. Jones and 
Furnas, 1987.) 

Terms 

cl c2 

human 1 0 
interface 1 0 
computer 1 1 
user 0 1 
system 0 1 
response 0 I 
time 0 1 
EPS 0 0 

survey 0 1 
trees 0 0 

graph 0 0 

minors 0 0 

Documents 

c3 c4 c5 ml 

0 I 0 0 
I 0 0 0 
0 0 0 0 
1 0 I 0 
1 2 0 0 
0 0 1 0 
0 0 I 0 
1 1 0 0 
0 0 0 0 
0 0 0 1 
0 0 0 0 
0 0 0 0 

m2 m3 m4 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 1 
1 I 0 
1 1 1 
0 1 1 

just two dimensions. Figure 1 shows the two-dimensional 
geometric representation for terms and documents that re- 
sulted from the SVD analysis. Details of the mathematics 
underlying the analysis will be presented in the next sec- 
tion. The numerical results of the SVD for this example are 
shown in the appendix and can be used to verify the place- 
ment of terms and documents in Figure 1. Terms are shown 
as filled circles and labeled accordingly; document titles 
are represented by open squares, with the numbers of the 

terms contained in them indicated parenthetically. Thus, 
each term and document can be described by its position in 
this two-dimensional factor space, 

A concrete example may make the procedure and its One test we set ourselves is to find documents relevant 
putative advantages clearer. Table 2 gives a sample data- to the query: “human computer interaction.” Simple term 
set. In this case, the document set consisted of the titles of matching techniques would return documents cl, c2, and 
nine Bellcore technical memoranda. Words occurring in c4 since they share one or more terms with the query. How- 
more than one title were selected for indexing; they are ever, two other documents, which are also relevant (c3 and 
italicized. Note that there are two classes of titles: five c5), are missed by this method since they have no terms 
about human-computer interaction (labeled c I -c5) and in common with the query. The latent semantic structure 
four about graph theory (labeled ml-m4). The entries in method uses the derived factor representation to process 
the term by document matrix are simply the frequencies the query; the first two-dimensions are shown in Figure I. 
with which each term actually occurred in each document. First, the query is represented as a “pseudo-document” in 
Such a matrix could be used directly for keyword-based re- the factor space. Two of the query terms, “human” and 
trievals or, as here, for the initial input of the SVD analysis. “computer,” are in the factor space, so the query is placed 
For this example we carefully chose documents and terms at their centroid and scaled for comparison to documents 
so that SVD would produce a satisfactory solution using (the point labeled q in Figure 1 represents the query). 
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2-D Plot of Terms and Dots from Example 

0 m4(9,11,12) 
10 tree, 

Yli~(lmd~; 
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\ \ \ \ 98 EPS 0 c3(2,45,8) 
\ l 5 system 

\ 
\ 
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\ 

\ 
\ 

\ 
Dimension 1’ 

FIG. I. A two-dimensional plot of 12 Terms and 9 Documents from the sampe TM set. Terms are represented by filled circles. Documents are shown 
as open squares, and component terms are indicated parenthetically. The query (“human computer interaction”) is represented as a pseudo-document at 
point 9. Axes are scaled for Document-Document or Tern-Term comparisons. The dotted cone represents the region whose points are. within a cosine of 
.9 from the query 4. All documents about human-computer (clLc5) are “near” the query (i.e., within this cone), but none of the graph theory documents 
(ml-m4) arc nearby, In this reduced space, even documents c3 and c5 which share no terms with the query arc near it. 

Then, we simply look for documents which are near the 
query, q. In this case, documents cl-c5 (but not ml-m4) 
are “nearby” (within a cosine of .9, as indicated by the 
dashed lines). Notice that even documents c3 and c5 which 
share no index terms at all with the query are near it in 
this representation. The relations among the documents ex- 
pressed in the factor space depend on complex and indirect 
associations between terms and documents, ones that come 
from an analysis of the structure of the whole set of rela- 
tions in the term by document matrix. This is the strength 
of using higher order structure in the term by document 

matrix to represent the underlying meaning of a single 
term, document, or query. It yields a more robust and eco- 
nomical representation than do term overlap or surface- 
level clustering methods. 

Technical Details 

The Singular Value Decomposition (SVD) Model. 
This section details the mathematics underlying the par- 
ticular model of latent structure, singular value decomposi- 
tion, that we currently use. The casual reader may wish to 
skip this section and proceed to the next section. 

Any rectangular matrix, for example a t x d matrix of 
terms and documents, X, can be decomposed into the 
product of three other matrices: 

X = T&D,‘, 

such that T,, and D, have orthonormal columns and S, is di- 
agonal. This is called the singular value decomposition of 
X. T,, and D, are the matrices of left and right singular vec- 
tors and SO is the diagonal matrix of singular values.4 Sin- 
gular value decomposition (SVD) is unique up to certain 
row, column and sign permutation? and by convention the 
diagonal elements of SO are constructed to be all positive 

and ordered in decreasing magnitude. 

%VD is closely related to the standard eigenvalue-eigenvector or 
spectral decomposition of a square symmetric matrix, Y, into WY’, 
where V is orthonormal and L is diagonal. The relation between SVD and 
eigen analysis is more than one of analogy. In fact, TO is the matrix of 
eigenvectors of the square symmetric matrix Y = XX’, DO is the matrix 
of eigenvectors of Y = X’X, and in both cases, 5: would be the matrix, 
L , of eigenvalues. 

‘Allowable permutations are those that leave SO diagonal and maintain 
the correspondences with TO and Da. That is, column i and j of SO may be 
interchanged iff row i andj of SO are interchanged, and columns i and j of 
T,, and Da are interchanged. 
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Figure 2 presents a schematic of the singular value de- 
composition for a t x d matrix of terms by documents. 

In general, for X = T,S, D,’ the matrices To, D,, and SO 
must all be of full rank. The beauty of an SVD, however, 
is that it allows a simple strategy for optimal approximate 
fit using smaller matrices. If the singular values in S, are 
ordered by size, the first k largest may be kept and the re- 
maining smaller ones set to zero. The product of the result- 
ing matrices is a matrix X which is only approximately 
equal to X, and is of rank k. It can be shown that the new 
matrix X is the matrix of rank k, which is closest in the 
least squares sense to X. Since zeros were introduced into 
S,, the representation can be simplified by deleting the 
zero rows and columns of S, to obtain a new diagonal ma- 
trix S, and then deleting the corresponding columns of 
T,, and D, to obtain T and D respectively. The result is a 
reduced model: 

X=i= TSD’ 

which is the rank-k model with the best possible least- 
squares-fit to X. It is this reduced model, presented in 
Figure 3, that we use to approximate our data. 

The amount of dimension reduction, i.e., the choice of 
k, is critical to our work. Ideally, we want a value of k that 
is large enough to fit all the real structure in the data, but 
small enough so that we do not also fit the sampling error 
or unimportant details. The proper way to make such 
choices is an open issue in the factor analytic literature. 

In practice, we currently use an operational criterion- a 
value of k which yields good retrieval performance. 

Geometric Interpretation of the SVD Model. For 
purposes of intuition and discussion it is useful to interpret 

documents 

terms X 

L 

txd 

X 

the SVD geometrically. The rows of the reduced matrices 
of singular vectors are taken as coordinates of points repre- 
senting the documents and terms in a k dimensional space. 

With appropriate resealing of the axes, by quantities related 
to the associated diagonal values of S, dot products between 
points in the space can be used to compare the correspond- 
ing objects. The next section details these comparisons. 

Computing Fundamental Comparison Quantities 
from the SVD Model. There are basically three sorts of 
comparisons of interest: those comparing two terms (“How 
similar are terms i and j?“), those comparing two docu- 
ments (“How similar are documents i and j?“), and those 
comparing a term and a document (“How associated are 
term i and document j?“). In standard information retrieval 
approaches, these amount respectively, to comparing two 

rows, comparing two columns, or examining individual 
cells of the original matrix of term by document data, X. 
Here we make similar comparisons, but use the matrix X, 
since it is presumed to represent the importtnt and reliable 
patterns underlying the data in X. Since X = TSD ‘, the 
relevant quantities can be computed just using the smaller 

matrices, T, D, and S. 
Comparing Two Terms. The dot product between two 

row vectors of X reflects the extent to which two terms 

have a similar pattemAtf occurrence across the set of docu- 
ments. The matrix XX’ is the square symmetric matrix 
containing all these term-to-term dot products. Since S is 
diagonal and D is orthonormal. It is easy to verify that: 

Note that this means that the i,j cell of XX’ can be ob- 
tained by taking the dot product between the i and j rows 

TO 

mxm mxd 

txm 

TO SO DO 

Singular value decomposition of the term x document matrix, X. Where: 

To has orthogonal, unit-length columns (To’ To = I) 

Do has orthogonal, unit-length columns (D,’ Do = I) 

So is the diagonal matrix of singular values 

t is the number of rows of X 
d is the number of columns of X 
m is the rank of X (< min(t,d)) 

FIG. 2. Schematic of the Singular Value Decomposition (SVD) of a rectangular term by document matrix. The original term by document matrix is 
decomposed into three matrices each with linearly independent components. 
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of the matrix TS. That is, if one considers the rows of TS 
as coordinates for terms, dot products between these points 
give the comparison between terms. Note that the relation 
between taking T as coordinates and taking TS as coor- 
dinates is simple since S is diagonal; the positions of the 
points are the same except that each of the axes has been 
stretched or shrunk in proportion to the corresponding di- 
agonal element of S 

Comparing Two Documents. The analysis for compar- 
ing two documents is similar, except that in this case it is 
the dot product between two column vectors of the matrix 
2 which tells the extent to which two documents have a 
similar profile of terms. Thus the matrix 2% contains the 
document-to-document dot products. The definitions of the 

matrices T, S, and D again guarantee: 

Here the i,j cell of ?‘f is obtained by taking the dot prod- 
uct between the i and j rows of the matrix DS. So one can 
consider rows of a DS matrix as coordinates for documents, 

and take dot products in this space. (Again note that the 
DS space is just a stretched version of the D space.) 

Comparing a Term and a Document. This comparison 
is different. Instead of trying to estimaJe the dot product 
between rows or between columns of X, the fundamental 
comparison between a term and a document is the value of 
an individual cell of .?. 2 is defined in terms of matrices T, 
S, and D Repeating it here: 

i = TSD’ 

The i, j cell of i is therefore obtained by taking the dot 
product between the ith row of the matrix TS”2 and thejth 
row of the matrix DS”2. Note that while the within com- 
parisons (i.e., term-term or document-document) involve 
using rows of TS and DS for coordinates, the between 
comparision requires TS “2 and DS “’ for coordinates. That 
is, it is not possible to make a single configuration of 
points in a space that will allow both between and within 
comparisions. They will be similar however, differing only 
by a stretching or shrinking of the axes by a factor of S”2. 

Finding Representations for Pseudo-Documents. The 
previous results show how it is possible to compute com- 
parisions between tht various objects associated with the 
rows or columns of X. It is very important in information 
retrieval applications to compute appropriate comparison 
quantities for objects that did not appear in the original 

analysis. For example, we want to be able to take a com- 
pletely novel query, find some point for it in the space, and 
then look at its cosine with respect to terms or documents 
in the space. Another example would be trying, after-the- 
fact, to find representations for documents that did not ap- 
pear in the original analysis. The new objects in both these 
exampl$s are very much like the documents of the matrices, 
X and X, in that they present themselves as vectors of terms. 
It is for this reason that we call them pseudo-documents. In 
order to compare a query or pseudo-document, q, to other 
documents, we need to be able to start with its term vector 
X, and derive a representation D, that we can use just like 

a row of D in the comparison formulas of the preceding 
section. One criterion for such a derivation is that putting 

in a real document Xi shou,d give Di (at least when the 
model is perfect, i.e., X = X). With this constraint, a little 
algtbra shows that: 

D,, = X;TS-’ 

Note that with appropriate resealing of the axes, this 
amounts to placing the pseudo-document at the centroid of 
its corresponding term points. This D, then is just like a 
row of D and, appropriately scaled by S “2 or S , can be 
used like a usual document’s factor vector for making be- 
tween or within comparisons, respectively. 

Preprocessing and Normalization. The equations given 

here do not take into account any preprocessing or re- 
weighting of the rows or columns of X. Such preprocess- 
ing might be used to prevent documents of different overall 
length from having differential effect on the model, or be 
used to impose certain preconceptions of which terms are 
more important. The effects of certain of these transforma- 
tions can be taken into account in a straightforward way, 
but we will not go into the algebra here. 

Tests of the SVD Latent Semantic Indexing 
(LSI) Method 

We have so far tried the LSI method on two standard 

document collections where queries and relevance judg- 
ments were available (MED and CISI). PARAFAC 
(Harshman & Lundy, 1984b), a program for the iterative 
numerical solution of multi-mode factor-analysis prob- 
lems, was used for the studies reported below. (Other pro- 
grams for more standard SVD are also available-e.g., 
Golub, Luk, and Overton, 1981; Cullum, Willoughby, and 
Lake, 1983.) 

“Documents” consist of the full text of the title and ab- 
stract. Each document is indexed automatically; all terms 
occurring in more than one document and not on a stop list 
of 439 common words used by SMART are included in the 
analyses.6 We did not stem words or map variants of 
words to the same root form. The analysis begins with a 
term by document matrix in which each cell indicates the 
frequency with which each term occurs in each document. 
This matrix was analyzed by singular value decomposition 
to derive our latent structure model which was then used 
for indexing and retrieval. Queries were placed in the re- 
sulting space at the centroid of their constituent terms 
(again, all terms not on the stop list and occurring in more 

6We have argued above that the more terms the better, but so far, 
computational constraints have limited us to around 7000 terms. Terms 
that occur in only one document, or equally frequently in all documents 
have little or no influence on the SVD solution. Rejecting such terms has 
usually been sufficient to satisfy our computational constraints. (In addi- 
tion, we wanted to be as consistent with SMART as possible in indexing, 
thus the omission of SMART’s common words.) Given greater resources, 
we see no reason to omit any terms from the latent structure analysis. 
Even given current limited computational resources, the terms omitted in 
indexing can be used for retrieval purposes by folding them back into the 
concept space, as we described briefly in the text. 
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than one document were used). Cosines between the query 
vector and document vectors are then straightforward to 
compute (see the “Technical Details” section for details), 
and documents are ordered by their distance to the query. 
In many senses, the current LSI method is impoverished 
and thus provides a conservative test of the utility of latent 
semantic structure in indexing and information retrieval. 
We have so far avoided adding refinements such as stem- 
ming, phrases, term-weighting, and Boolean combinations 
(all of which generally result in performance improve- 
ments) in order to better evaluate the utility of the basic 

representation technique. 

on all terms occurring in more than one document and 
not on SMART’s stop list of common words resulted in 
5823 indexing terms. Some additional characteristics of 
the dataset are given below: 

Term and LSI Voorhees SMART 

Number of unique terms 
Mean number of 

5823 6927 6927 

terms per document 
Mean number of terms per query 
Mean number of 

50.1 51.6 51.6 
9.8 39.7’ 10.1 

relevant documents per query 23.2 23.2 23.2 

We compare the results of our latent structure indexing 
(LSI) method against a straightforward term matching 
method, a version of SMART, and against data reported by 
Voorhees (1985) for the same standard datasets. The term 
overlap comparisons provide a baseline against which to 
assess the benefits of indexing by means of latent semantic 
structure rather than raw term matching. For the term 
matching method, we use the same term-document matrix 
that was the starting point for the LSI method. A query is 
represented as a column, and cosines between the query 
column and each document column are calculated. The 
SMART and Voorhees systems are more representative of 
state of the art information retrieval systems, but differ- 
ences in indexing, term weighting, and query processing 
preclude precise comparisons of our LSI method and these 
systems. Nonetheless, such comparisons are of interest. 
For the SMART evaluations, documents were indexed us- 
ing a stop list of common words, full stemming, and raw 
term frequencies as options. Queries were similarly pro- 
cessed and a vector sequential search was used for match- 
ing queries and documents. This particular invocation of 
SMART is the same as our term matching method except 
for the initial choice of index terms. The Voorhees data 
were obtained directly from her paper in which she used a 
vector retrieval system with extended Boolean queries (see 
Voorhees (1985) for details). Her documents were indexed 
by removing words on a stop list, mapping word variants 
into the same term, and weighting terms. Weighted ex- 

tended Boolean queries were used for retrieval. 

The number of unique terms, terms per document, and terms 
per query vary somewhat because different term-processing 
algorithms were used in the different systems. A loo-factor 
SVD of the 5823 term by 1033 document matrix was 
obtained, and retrieval effectiveness evaluated against 
the 30 queries available with the dataset. Figure 4 shows 
precision as a function of recall for a LSI lOO-factor solu- 
tion (“LSI- loo”), term matching (“TERM”), SMART 
(“SMART”), and the Voorhees data (“VO”), all on the 
same set of documents and queries. 

Performance is evaluated by measuring precision at sev- 
eral different levels of recall. This is done separately for 
each available query and then averaged over queries. For 
the LSI, term matching, and SMART runs, full precision- 
recall curves can be calculated. For the Voorhees data, 
only two precision-recall pairs are available; these are the 
values obtained when 10 or 20 documents were retumed- 
see her Figures 4b and 6b. We present the values from her 
sequential search (SEQ) condition, since the best perfor- 
mance is generally observed in this condition and not in 
one of the retrieval conditions using document clusters. 

MED 

For all but the two lowest levels of recall (. lo), preci- 

sion of the LSI method lies well above that obtained with 
straightforward term matching, SMART, and the vector 
method reported by Voorhees. The average difference in 
precision between the LSI and the term matching method 
is .06 (.51 vs. .45), which represents a 13% improvement 
over raw term matching. (The odds against a difference 
this large or larger by chance is 29 to 1, t(29) = 2.23.) 
Thus, LSI captures some structure in the data which is ob- 
scured when raw term overlap is used. The LSI method 
also compares favorably with SMART (t(29) = 1.96; the 
odds against a difference this large or larger by chance is 
16 to 1) and the Voorhees system. It is somewhat surpris- 
ing that the term matching and SMART methods do not 

differ for this data set. There are several differences in in- 
dexing between LSI and SMART (word stemming is used 
in SMART but not LSI, and SMART includes word stems 
occurring in any document whereas LSI, for computational 
reasons, includes only terms occurring in more than one 
document) that should lead to better performance for 
SMART. The difference in performance between LSI and 
the other methods is especially impressive at higher recall 
levels where precision is ordinarily quite low, thus repre- 
senting large proportional improvements. The compara- 
tively poor performance of the LSI method at the lowest 
levels of recall can be traced to at least two factors. First, 
precision is quite good in all systems at low recall, leaving 
little room for improvement. Second, latent semantic in- 
dexing is designed primarily to handle synonymy problems 
(thus improving recall); it is less successful in dealing with 
polysemy (precision). Synonymy is not much of a problem 
at low recall since any word matches will retrieve some of 

The first standard set we tried, MED, was the com- 
monly studied collection of medical abstracts. It consists 

‘The value 39.7 is reported in Table 1 of the Voorhees article. We 
suspect this is in error, and that the correct value may be 9.7 which would 

of 1033 documents and 30 queries. Our automatic indexing be in line with the other measures of mean number of terms per query. 
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i = T S D’ 

Reduced singular value decomposition of the term x document matrix, X. Where: 

T has orthogonal, unit-length columns (T’T = I) 
D has orthogonal, unit-length columns (D’ D = I) 

S is the diagonal matrix of singular values 

t is the number of rows of X 

d is the number of columns of X 
m is the rank of X (s min(t,d)) 

k is the chosen number of dimensions in the reduced model (k tm) 

RG. 3. Schematic of the reduced Singular Value Decomposition (SVD) of a term by document matrix. The original term by document matrix is ap- 

proximated using the k largest singular values and their corresponding singular vectors. 

the relevant documents. Thus the largest benefits of the 
LSI method should be observed at high recall, and, in- 
deed, this is the case. 

Up to this point, we have reported LSI results from a 

loo-factor representation (i.e., in a loo-dimensional space). 
This raises the important issue of choosing the dimension- 

co 
d 

0 
6 

0.0 0.2 0.4 0.6 0.6 I .o 

Recall 

FIG. 4. Precision-recall curves for TERM matching, a loo-factor LSI, SMART, and Voorbees systems on the MED dataset. The data for the TERM 
matching, LSI, and SMART methods are obtained by measuring precision at each of nine levels of recall (approximately .lO increments) for each query 
separately and then averaging over queries. The two Voorhees data points are taken from Table 4b in her article. 
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ality. Ideally we want enough dimensions to capture all the 
real structure in the term-document matrix, but not too 
many, or we may start modeling noise or irrelevant detail 
in the data. How to choose the appropriate number of 
dimensions is an open research issue. In our tests, we have 
been guided by the operational criterion of “what works 
best.” That is, we examine performance for several dif- 
ferent numbers of factors, and select the dimensionality 
which maximizes retrieval performance.’ The results for 
the MED dataset are shown in Figure 5 which presents av- 
erage precision as a function of number of factors. As can 
be seen, mean precision more than doubles (from .25 to 
.52) as the number of factors increases from 10 to 100, 
with a maximum at 100. We therefore use the loo-factor 
space for the results we report. In this particular dataset, 
performance might improve a bit if solutions with more 
than 100 factors were explored, but, in general, it is not 
the case that more factors necessarily means better perfor- 
mance. (In other small applications, we have seen much 
clearer maxima; performance increases up to some point, 
and then decreases when too many factors are used. One 
interpretation of this decrease is that the extra parameters 
are modeling the sampling noise or peculiarities of the 
sample rather than important underlying relationships in the 
pattern of term usage over documents.) It is also important 

‘This is actually quite easy to do since the SVD solutions are nested. 
To explore performance in a IO-dimensional solution, for example, cosines 
are calculated using only the first 10 coordinates of the loo-factor solution. 

to note that previous attempts to use factor analytic tech- 
niques for information retrieval have used small numbers 
of factors (Koll (1979), seven dimensions; and Ossorio 
(1966), 13 dimensions; Borko & Bemick (1963), 21 dimen- 

sions). We show a more than 50% improvement in perfor- 
mance beyond this range, and therefore suspect that some 
of the limited utility of previous factor analytic approaches 
may be the result of an impoverished representation. 

Unfortunately this MED dataset was specially constructed 
in a way that may have resulted in unrealistically good re- 
sults. From what we can determine, the test collection 
was made up by taking the union of the returns of a set of 

thorough keyword searches for documents relevant to the 
30 queries in the set. It thus may be an unrepresentatively 
well-segmented collection. The sets of documents for par- 
ticular queries are probably isolated to an abnormal extent 
in the multidimensional manifold of concepts. In such a 
circumstance our method does an excellent job of defining 
the isolated subdomains and separating them for retrieval. 
This is probably not the way most natural document col- 
lections are structured. It is worth noting, however, that 
other automatic techniques applied to the same dataset are 
not able to capitalize as well on this same abnormal struc- 
tural property. Thus the fact that LSI greatly outperforms 
the rest is still quite significant. (Note also that the use of 
keyword searches to define the document test set probably 
biases results in favor of methods based on surface term 
matching, such as SMART, since no documents that do 
not contain any of the keywords are included.) 

MED - Precision as a Function of Number of Factors 

:r: 

0 20 40 60 80 100 120 

Number of Factors 

FIG. 5. A plot of average precision (averaged over nine levels of recall) as a function of number of factors for the MED dataset. Precision more than 
doubles (from about .20 to .50) as the number of factors is increased from 10 to 100. 
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CISI 

Our second test case is the CISI set of 1460 information 
science abstracts. This set has been consistently difficult 
for automatic retrieval methods. It consists of 1460 doc- 
uments and 35 queries. Our automatic indexing, which ex- 
cluded words on SMART’s stop list of common words and 
words occurring in only one document, resulted in 5135 
index terms. Some additional characteristics of the dataset 
are given below: 

Term and LSI Voorhees SMART 

Number of unique terms 
Mean number of 

5135 4941 5019 

terms per document 
Mean number of terms per query 
Mean number of 

45.4 43.9 45.2 
7.7 1.2 7.8 

relevant documents per query 49.8 49.8 49.8 

A loo-factor SVD solution was obtained from the 5135 
term by 1460 document matrix, and evaluated using the 
first 35 queries available with the dataset. LSI results for a 
loo-factor solution (“LSI-100”) along with those for term 
matching (“TERM”), SMART (“SMART”), and Voorhees 
(“VO”) are shown in Figure 6. All the methods do quite 

poorly on this dataset, with precision never rising above 
.30, even for the lowest levels of recall. Average precision 
is .ll for both LSI and term matching (t = 1). For this 
data set, the latent structure captured by the SVD analysis 

is no more useful than raw term overlap in capturing the 
distinctions between relevant and irrelevant documents for 
the available queries. The Voorhees data cover only a very 
limited range of low recall levels, but for these values 
precision is similar to that for LSI and term matching. 
SMART, on the other hand, results in reliably better per- 
formance than LSI, although the absolute levels of preci- 
sion (. 14) is still very low. (The odds against differences 
this large or larger by chance is over 1000 to 1; t(34) = 
3.66.) We believe that the superiority of SMART over LSI 
can be traced to differences in term selection that tend to 
improve performance. As noted previously, SMART used 
stemmed words but LSI did not, and SMART included all 
terms whereas the LSI included only those appearing in 
more than one document. Since few terms which appear in 
only one document (and were thus excluded by LSI) are 
used in the queries, the omission of these words is unlikely 
to be a major determinant of performance. Thus, stemming 

appears to be the likely source of performance differences. 
We have recently completed a new LSI analysis using 

SMART’s index terms. This enabled us to explore how 
much of the difference between SMART and the original 
LSI was due differences in term selection and further to 
see if additional latent structure could be extracted. For this 
analysis, we began with a 5019 term (SMART’s terms) by 
1460 document matrix and obtained a loo-factor SVD so- 
lution. The 35 test queries were reevaluated using this new 
LSI solution (which we refer to as LSI-SMART). The re- 

CISI: Precision-Recall Curves 
Means across Queries 
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FIG. 6. Precision-recall curves for TERM matching, a loo-factor LSI, SMART, and Voorhees systems on the CISI dataset. The data for TERM match- 
ing, LSI, and SMART are obtained by measuring precision at each of nine levels of recall (approximately .I0 increments) for each query separately and 
then averaging over queries. The two Voorhees data points are taken from Table 6b in her paper. 
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sulting performance was indistinguishable from SMART’s; 
average precision for both methods was .14(t < 1). This 
suggests that much of the initial difference between LSI 
and SMART was due to term selection differences. Unfor- 
tunately, LSI was unable to improve upon term matching - 
either in the initial LSI vs. term matching comparison, or 
in the LSI-SMART vs. SMART comparison. Stemming, 
however, seems to capture some structure that LSI was un- 

able to capture as evidenced by the superior performance 
of SMART relative to term matching. In theory, latent se- 
mantic analyses can extract at least some of the commonali- 
ties is usage of stemmed forms. In practice, we may often 
have insufficient data to do so. 

A problem in evaluating the CISI dataset is the very low 
level of precision. Our intuition is that this database con- 
tains a very homogeneous distribution of documents that is 
hard to differentiate on the basis of abstracts. Moreover, 
many of the test queries, which were given in natural lan- 
guage, seem very vague and poorly stated. Thus the rele- 
vance judgments may not be sufficiently reliable to allow 
any retrieval system to perform well, or to provide an ade- 
quate comparison between methods. No direct evidence 
has been reported on the reliability (repeatability) of these 
relevance judgments, so this is mostly conjecture, although 
we do find many cases in which the relevance judgments 
appear to be in obvious error. In addition, it seems to us 
that poorly stated queries would invite excessive reliance 
on term overlap in judging relevance, especially if the 
judges were familiar with term matching as a possible 
retrieval strategy. 

Summary of Results from LSI Analyses 

These results are modestly encouraging. They show the 
latent semantic indexing method to be superior to simple 
term matching in one standard case and equal in another. 
Further, for these two databases, performance with LSI is 
superior to that obtained with the system described by 
Voorhees; it performed better than SMART in one case 

and equal in the other (when term selection differences 
were eliminated). In order to assess the value of the basic 
representational method, we have so far avoided the addi- 
tion of refinements that one would consider in a realistic 
application, such as discriminative term weighting, stem- 
ming, phrase finding or a method of handling negation or 

disjunction in the queries. So far we have tested the method 
only with queries formulated to be used against other re- 
trieval methods; the method almost certainly could do bet- 
ter with queries in some more appropriate format. We have 
projects in progress to add standard enhancements and 
to incorporate them in a fully automatic indexing and re- 
trieval system. In addition, we are working on methods to 
incorporate the very low frequency, but often highly infor- 
mative, words that were filtered out in the trial analysis 
procedures. It seems likely that with such improvements 
LSI will offer a more effective retrieval method than has 
previously been available. 

Conclusions and Discussion 

Although factor analytic approaches have been previ- 
ously suggested and tried in the literature, they have all 
had what we believe to be serious shortcomings which the 
present attempt overcomes. We have examined problems 
of reasonable size (1000-2000 document abstracts; and 
5000-7000 index terms) using a rich, high-dimensional 

representation, which appears necessary for success. The 
explicit representation of both terms and documents in the 
same space makes retrieving documents relevant to user 
queries a straightforward matter. Previous work by Borko 
and his colleagues (Atherton & Borko, 1965; Borko & 
Bemick, 1963) is similar in name to our approach, but used 

the factor space only for document clustering, not docu- 
ment retrieval, and computational simplifications reduced 
its representational power. In Borko and Bemick (1963), 
for example, factor analysis was performed on a term- 
term correlation matrix (calculated from word usage over 
260 abstracts), and 21 orthogonal factors were selected on 
the basis of their interpretability. Documents were classi- 
fied into these 21 categories on the basis of normalized 
factor loadings for each term in the abstract, and perfor- 
mance was comparable to that of another automatic system. 
It should be noted, however, that the information used for 
classification is much less than that which is available in 
the 21-dimensional factor space, since only the factor load- 

ing of “significant” terms on each of the factors was used 
(e.g., one value for 5, 4, and 7 terms defining the three 
sample factors presented in their Appendix B). In addition, 
Borko’s work addressed the problem of document classifi- 
cation, and not document retrieval. There is, for example, 
no discussion of how one might use the full factor space 
(and not just the document clusters derived from it) for 
document retrieval. 

Koll’s (1979) work on concept-based information re- 
trieval is very similar in spirit to our latent semantic index- 
ing. Both terms and documents are represented in a single 
concept space on the basis of statistical term co-occurrences. 
Beginning with axes defined by a set of seven nonoverlap- 
ping (in terms) and almost-spanning documents, terms 
were placed on the appropriate axis. New documents were 
placed at the mean of constituent terms, and new terms 
were placed at the location of the document in which they 
occurred. The system was evaluated with only a very small 
database of documents and queries, but under some cir- 
cumstances performance was comparable to that of SIRE 
for Boolean and natural language queries. Our experience 
with the MED dataset suggests that better performance 
might have been obtained with a higher dimensional repre- 
sentation. In addition, the latent semantic approach is not 
order-dependent (as is Koll’s procedure), and it is a mathe- 
matically rigorous way of uncovering truly orthogonal basis 

axes or factors for indexing. 
The representation of documents by LSI is economical; 

each document and term need be represented only by 
something on the order of 50 to 150 values. We have not 
explored the degree of accuracy needed in these numbers, 
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but we guess that a small integer will probably suffice. 
The storage requirements for a large document collection 

can be reduced because much of the redundancy in the 
characterization of documents by terms is removed in the 
representation. Offsetting the storage advantage is the fact 
that the only way documents can be retrieved is by an ex- 
haustive comparison of a query vector against all stored 
document vectors. Since search algorithms in high dimen- 
sional space are not very efficient on serial computers, this 
may detract from the desirability of the method for very 
large collections. An additional drawback involves updat- 
ing. The initial SVD analysis is time consuming, so we 
would like a more efficient method of adding new terms 
and documents. We suggest that new documents be located 
at the centroid of their terms (appropriately scaled); and 
new terms be placed at the centroid of the documents in 
which they appear (appropriately scaled). How much of 
this updating can be done without having to perform a new 
decomposition is unknown. 

While the LSI method deals nicely with the synonymy 
problem, it offers only a partial solution to the polysemy 
problem. It helps with multiple meanings because the 
meaning of a word can be conditioned not only by other 
words in the document but by other appropriate words in 
the query not used by the author of a particular relevant 
document. The failure comes in the fact that every term is 
represented as just one point in the space. That is, a word 
with more than one entirely different meaning (e.g., 
“bank”), is represented as a weighted average of the differ- 
ent meanings. If none of the real meanings is like the aver- 
age meaning, this may create a serious distortion. (In 
classical term overlap methods, the meaning of the term is 
the union of all of it’s meanings, which probably leads to 
less outright distortion, but to more imprecision.) What is 
needed is some way to detect the fact that a particular term 
has several distinct meanings and to subcategorize it and 
place it in several points in the space. We have not yet 
found a satisfactory way to do that (but see Amsler (1984), 
Choueka and Lusignan (1985); Lesk (1986)). 

The latent semantic indexing methods that we have dis- 
cussed, and in particular the singular-value decomposition 
technique that we have tested, are capable of improving the 
way in which we deal with the problem of multiple terms 
referring to the same object. They replace individual terms 
as the descriptors of documents by independent “artificial 
concepts” that can be specified by any one of several terms 
(or documents) or combinations thereof. In this way relevant 
documents that do not contain the terms of the query, or 
whose contained terms are qualified by other terms in the 
query or document but not both, can be properly character- 
ized and identified. The method yields a retrieval scheme 
in which documents are ordered continuously by similarity 
to the query, so that a threshold can be set depending on 
the desires and resources of the user and service. 

At this point in its development, the method should be 
regarded as a potential component of a retrieval system, 
rather than as a complete retrieval system as such. As 
a component it would serve much the same function as is 

served by raw term vector ranking and other comparison 
methods. It’s putative advantages would be the noise re- 

duction, as described above, and data compaction through 
the elimination of redundancy. In applying the method, 
some of the same implementation issues will arise as in raw 
vector methods -in particular questions of term weight- 
ing, stemming, phrasal entries, similarity measure, and 
counterparts for Boolean operators. Unfortunately, the value 
of such retrieval enhancing procedures will have to be re- 
evaluated for use with LSI because its representation changes 
the nature of the problems with which these procedures 
were intended to deal. For example, stemming is done to 
capture likely synonyms. Since LSI already deals with this 
problem to some extent, the additional value of stemming 
is an open question. Likewise, LSI averages the “mean- 
ing” of polysemous words, where raw term matching main- 
tains one-to-many mappings; as a result, phrases, and 
other disambiguation techniques may be more important. 

Appendix. SVD Numerical Example 

In the “Technical Details” section, we outlined the details 
of the Singular Value Decomposition (SVD) Model. This 
appendix presents a numerical example using the sample 
term by document matrix described in the “Overview” sec- 
tion and shown in Table 2 and Figure 1. 

The example 12-term by nine-document matrix from 

Table 2 is presented below. 

x= 
100100000 

101000000 

110000000 

011010000 

011200000 

010010000 

010010000 

001100000 

010000001 

000001110 

000000111 

000000011 

Recall that any rectangular matrix, for example a t X d 
matrix of terms and documents, X, can be decomposed 
into the product of three other matrices: 

X = TO&D;, 

such that T,, and D, have orthonormal columns and So is di- 
agonal. This is called the singular value decomposition 
(SVD) of X. 

Computing the SVD of the X matrix presented above 
results in the following three matrices for T,, S,, D, 
(rounded to two decimal places). 

TO (nine-dimensional left-singular vectors for 12 terms) 
S, (diagonal matrix of nine singular values) 
D, (nine-dimensional right-singular vectors for nine 

documents) 
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T, = 

0.22 -0.11 0.29 -0.41 -0.11 -0.34 0.52 -0.06 -0.41 

0.20 -0.07 0.14 -0.55 0.28 0.50 -0.07 -0.01 -0.11 

0.24 0.04 -0.16 -0.59 -0.11 -0.25 -0.30 0.06 0.49 

0.40 0.06 -0.34 0.10 0.33 0.38 0.00 0.00 0.01 

0.64 -0.17 0.36 0.33 -0.16 -0.21 -0.17 0.03 0.27 

0.27 0.11 -0.43 0.07 0.08 -0.17 0.28 -0.02 -0.05 

0.27 0.11 -0.43 0.07 0.08 -0.17 0.28 -0.02 -0.05 

0.30 -0.14 0.33 0.19 0.11 0.27 0.03 -0.02 -0.17 

0.21 0.27 -0.18 -0.03 -0.54 0.08 -0.47 -0.04 -0.58 

0.01 0.49 0.23 0.03 0.59 -0.39 -0.29 0.25 -0.23 

0.04 0.62 0.22 0.00 -0.07 0.11 0.16 -0.68 0.23 

0.03 0.45 0.14 -0.01 -0.30 0.28 0.34 0.68 0.18 

so = 

3.34 

2.54 

2.35 

1.64 

1.50 

1.31 

0.85 

0.56 

0.36 

D, = 

0.20 -0.06 0.11 -0.95 0.05 -0.08 0.18 -0.01 -0.06 

0.61 0.17 -0.50 -0.03 -0.21 -0.26 -0.43 0.05 0.24 

0.46 -0.03 0.21 0.04 0.38 0.72 -0.24 0.01 0.02 

0.54 -0.23 0.57 0.27 -0.21 -0.37 0.26 -0.02 -0.08 

0.28 0.11 -0.51 0.15 0.33 0.03 0.67 -0.06 -0.26 

0.00 0.19 0.10 0.02 0.39 -0.30 -0.34 0.45 -0.62 

0.01 0.44 0.19 0.02 0.35 -0.21 -0.15 -0.76 0.02 

0.02 0.62 0.25 0.01 0.15 0.00 0.25 0.45 0.52 

0.08 0.53 0.08 -0.03 -0.60 0.36 -0.04 -0.07 -0.45 

The reader can verify that: 

X = TOSO 0; (except for small rounding errors) 

TO has orthogonal, unit length columns so T, Th = I 
D, has orthogonal, unit length columns so D, DA = I 

We now approximate X keeping only the first two sin- 
gular values and the corresponding columns from the T 
and D matrices. (Note that these are the T and D coordi- 
nates used to position the 12 terms and nine documents, 
respectively, in the two-dimensional representation of Fig- 
ure 1.) In this reduced model, 

X-i= TSD’ 
x= 

T s D' 

0.22 -0.11 3.34 0.20 0.61 0.46 0.54 0.28 0.00 002 0.02 0.08 

0.20 -0.07 2.54 -0.06 0.17 -0.13 -0.23 0.11 0.19 0.44 0.62 0.53 

0.24 0.04 

0.40 0.06 

0.64 -0.17 

0.27 0.11 

0.27 0.11 

0.30 -0.14 

0.21 0.27 

0.01 0.49 

0.04 0.62 

0.03 0.45 

Multiplying out the matrices TSD’ gives the following 
estimate of X, X. 

i= 

0.16 0.40 0.38 0.47 0.18 -0.05 -0.12 -0.16 -0.09 

0.14 0.37 0.33 0.40 0.16 -0.03 -0.07 -0.10 -0.04 

0.15 0.51 0.36 0.41 0.24 0.02 0.06 0.09 0.12 

0.26 0.84 0.61 0.70 0.39 0.03 0.08 0.12 0.19 

0.45 1.23 1.05 1.27 0.56 -0.07 -0.15 -0.21 -0.05 

0.16 0.58 0.38 0.42 0.28 0.06 0.13 0.19 0.22 

0.16 0.58 0.38 0.42 0.28 0.06 0.13 0.19 0.22 

0.22 0.55 0.51 0.63 0.24 -0.07 -0.14 -0.20 -0.11 

0.10 0.53 0.23 0.21 0.27 0.14 0.31 0.44 0.42 

-0.06 0.23 -0.14 -0.27 0.14 0.24 0.55 0.77 0.66 

-0.06 0.34 -0.15 -0.30 0.20 0.31 0.69 0.98 0.85 

-0.04 0.25 -0.10 -0.21 0.15 0.22 0.50 0.71 0.62 

There are two things to note about the i matrix. (1) It does 
not exactly match the original term by document matrix X 
(it gets closer and closer as more and more singular values 
are kept). (2) This is what we want; we don’t want per- 
fect fit since we think some of the O’s in X should be 1 and 
vice versa. 
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