
Detecting flames and insults in text

Altaf Mahmud
Brac University, Dhaka, Bangladesh

altaf.mahmud@gmail.com

Kazi Zubair Ahmed
Brac University, Dhaka, Bangladesh

infernohere@yahoo.com

Mumit Khan
Brac University, Dhaka, Bangladesh

mumit@bracuniversity.ac.bd

ABSTRACT
While the Internet has become the leading source of information, it is also become the
medium for flames, insults and other forms of abusive language, which add nothing to the
quality of information available. A human reader can easily distinguish between what is
information and what is a flame or any other form of abuse. It is however much more difficult
for a language processor to do this automatically. This paper describes a new approach for an
automated system to distinguish between information and personal attacks containing
insulting or abusive expressions in a given document. In Linguistics, insulting or abusive
messages are viewed as an extreme subset of the subjective language because of its extreme
nature. We create a set of rules to extract the semantic information of a given sentence from
the general semantic structure of that sentence to separate information from abusive language.

Key Words: insult, information, semantic, factive.

1. Introduction
Most of the time, Internet users get
frustrated when they search for any
information in a specific site, because
some peoples take it as a fun to use
personal attacking or insulting messages
for on-line communication. One of the best
examples can be �‘wikipedia�’ (URL:
http://www.wikipedia.org) where many
times these occurrences are happened,
which they called �‘wiki vandalism�’. Such
vandalisms in wikipedia are subsequently
reverted by another user. But, if an
automated system would help a user for
distinguishing flames and information in a
web page or in e-mail, user can decide
whether or not to read that article before.
Some messages can contain insulting
words or phrases but still they are
considered as factual information. For
example: a sentence �‘X is an idiot�’ is an
insult, doesn�’t contain any factual

information and should be discarded. But a
sentence �‘Y said that X is an idiot�’ is not an
insult any more, because it could conveys
information about what Y said about X.
Normal text searching methods or looking
for obscene expressions will annotate both
of them as flame. From this perspective,
we outline a sophisticated sentence
classification system using Natural
Language Processing, to identify a
sentence whether it is an insult or
information. This program first annotates
related words or phrases in a given
sentence; incorporates those annotated
elements with the corresponding general
semantic structure; then apply some
predefined rules for interpreting the basic
meaning of the sentence according to that
semantic structure and then decides
whether it is information or a flame.

Including the introduction in section 1,
section 2 describes the related work done
in this area; section 3 elaborates the
methodology part, which has two main
sub sections: preprocessing and
processing; section 4 contains the
description of the tools used in
implementation; Results and Discussion
are in section 5; limitations of this system
is examined in section 6; section 7 outlines
the future work; section 8 describes the
applications of our system and section 9
has the conclusion.

2. Related Work Done
A flame recognition system is Smokey,
proposed by Ellen Spertus [1] Smokey
looks not only for insulting words in the
context in which they are used but also for
syntactic constructs that tend to be
insulting or condescending. Each sentence
is run through a parser and converted into
Lisp s-expressions by sed and awk scripts
from that parser output. These s-
expressions are processed through some
semantic rules written in Emacs Lisp,
producing a 47-element feature vector
based on the syntax and semantics of each
sentence. A feature vector for each
message is then created by summing up the
vectors of each sentence. The resulting
feature vectors are evaluated with simple
rules, produced by Quinlan�’s C4.5
decision-tree generator to classify the
message as a flame or not. A training set of
720 messages was used by the decision
tree generator to determine feature based
rules that were able to correctly categorize
64% of the flames and 98% of the non-
flames in a separate test set of 460
messages.

2.1 Our contrast with Smokey

Smokey�’s semantic rules are some
classification rules, which are
attempted simultaneously to match
some patterns or the syntactical
positions of word sequences in a
sentence to classify it as a flame or not.
But our predefined rules rather tries to
extract the semantic information from

general semantic structure to interpret
the basic meaning of a sentence for
distinguishing whether it is a flame or
information; not any pattern matching.

Smokey is message level classification,
but our system is sentence level
classification.

We didn�’t include any sociolinguistic
observation or any site-specific
information to identify a sentence that
not only contains insulting words or
phrases but also use them in an
insulting manner, as Smokey does. In
our system, once insulting words or
phrases are found, the semantic
information we are getting by only
processing the sentence what it gives
us, ignoring the surroundings and
context.

3. Methodology

3.1 Our annotation scheme in contrast
to subjective language
Subjective language is language used to
express private states in the context of a
text or conversion [2] Researchers from
many subareas of Artificial Intelligence
and Natural Language Processing have
been working on the automatic
identification of personal opinions,
emotions, sentiments, speculations,
evaluations and other private states in
language [3] Automatic subjectivity
analysis would also be useful to perform
flame recognition, email classification etc.
[2] Since, flames are viewed as extreme
subset of subjective language [4]; we are
much more specific and relax. We are
considering neither contexts nor
surroundings. So, once we find any speech
event such as said, told etc. we annotate it
as a �‘factive�’ event.

Example: Mary said, �“John is an idiot.�”

According to subjectivity analysis,
including the implicit source <Writer> in
the above example, here nested sources are

<Writer, Mary, John> and it is clearly an
opinion at <Writer, Mary> level. Thus,
�‘onlyfactive�’ property for Mary�’s speaking
event said is no. And It is an insult at
<Mary, John> level since insult is �‘subset�’
of subjective language.

In our annotation
scheme, root verb
said is �‘factive�’ at
the corresponding
dependency structure
of fig-1, and the
complements of this
verb form the inner
sub-tree rooted at the
verb is, which is not
a �‘factive�’ event and
is�‘insulted�’. Since the
outer-most root verb
said is �‘factive�’ and subject Mary is a
name of a person, the whole sentence is
not a flame. Now if we look at the figure
from the top: the nested sources will be
<Mary, John>. Since source <Writer> is
implicit, we are not considering it.

3.2 Preprocessing
We need to consider two constraints for
meaning interpretation from the parser
output:

It is easier to extract the best semantic
information from a dependency
structure of a simple sentence rather
than a compound or a complex
sentence. So, we need to split up a
sentence into its corresponding clauses
and give each clause a simple
construction.

In a simple sentence, an event or verb
must follow its corresponding subject.
If this order is reversed, we need to
swap.

The steps of our preprocessing part, which
will be executed sequentially, are depicted
below:
1. Separate each sentence one per line.

2. Replace the factive event �‘according
to�’ by �‘accorded that�’ and swap the subject
and the event.

For example: According to Mary, john
didn�’t go downstairs.
After the operation: Mary accorded that
John didn�’t go downstairs.

3. Punctuation marks (�“�”) are used to give
a unit scope of speaker�’s speeches. One or
more sentences could be in a scope.
Because of punctuation marks are used in a
wide variety of ways, only two examples
are shown here to express the basic
formulation.

First example a paragraph:
�“John is waiting for the lift. He didn�’t go
downstairs,�” Mary replied while talking
with Lisa.

After applying some operations, the
original sentences in the paragraph will
become three separate sentences:
Mary replied, �“John is waiting for the lift.
He didn�’t go downstairs.�”
Mary replied while talking with Lisa.

If the original sentence was ended just
after the word replied, then the third
sentence will not be present.

Second example: �“John is waiting for the
lift,�” replied Mary, adding, �“He didn�’t go
downstairs.�”

This sentence will be separated like this:
Mary replied, �“John is waiting for the
lift.�”
adding, �“He didn�’t go downstairs.�”

4. Tag each sentence using stanford-
parser (see section 4 for brief description)
and store them. Since stanford-parser is a
probabilistic parser, give it a full sentence
before separate it into clauses.

5. Separate each sentence into clauses by
the clause separators. For some separators
we need to have some special
considerations:

fig -1

det

is

an

said

Mary

idiot

nsubj dobj

ccomp nsubj

John

, (comma): We just need to check whether
it separates two clauses. If so, then split the
sentence, otherwise not. This could be
automated.

After separating a sentence, if there is any
clause started with a verb, check whether
any of the previous clause consist only a
nominal subject, then put that nominal
subject in front of that verb. For an
example: John Smith, president of the
sports club, said, �“We will not tolerate it
anyway.�”

After separating by comma:
John Smith
<,>president of the sports club
<,>said, �“We will not tolerate it anyway.�”

Here, the verb is said and the first clause
contains only a nominal subject John
Smith. Put John Smith in front of said.

Comma just after the speech event will be
omitted as shown above.

 - (dash), -- (double dash): Consider an
example: We will not tolerate it anyway,
because we have to win the match - said
John Smith yesterday.

The above example shows those first and
second clauses (separated by �‘comma�’) are
the speeches of John Smith. The
mechanism is, after separating by �– (dash),
put punctuation marks (�“) at the beginning
of the first clause and at the end of the
previous clause of the clause where the
speech event (said) found, to put those
clauses in a unit scope. Then do the
adjustment for punctuation marks as
described in step 3.

and: Like comma see whether it separates
two clauses or not.

who and which: These two separators are
considered as same category.

An example: The speaker here is John
Smith, who is also president of the club.

Since, the noun phrase John Smith is at just
before the separator who, split up a
sentence by the separator and put that noun
phrase just at beginning of the next
separated clause. The above example will
be:
The speaker here is John Smith
<who> John Smith is also president of the
club.

This process is also same for the separator
<which>.

Note that, in this preprocessing section,
every separator is kept in angle brackets
before each separated clause.

The preprocessing tasks in this section,
however, are all predetermined. Some
preprocessing tasks cannot be
predetermined in this section and have to
be done at processing part, as described in
that section.

3.3 Processing
Before going to the actual processing part,
we need to do some preprocessing job each
time by manipulating a stack before and
after processing of each clause (or a simple
sentence). After traversing each
dependency tree we are getting some
nested sources, which are agent,
experiencer with their corresponding
events or verbs. These nested sources and
their events are pushed into stack while
traversing the tree.

3.3.1 Stack Manipulation
A subject (agent or experiencer) must exist
in the stack with its corresponding event or
verb. For all of the figures shown in this
paper, stack grows downwards (directed by
an arrow); the top of the stack is at the
bottom.

Manipulation steps are sequential:
1. Before feeding a clause or a sentence
to the parser, we are checking the first
word of that clause whether it is a verb. If
verb is found, check whether it is a new
sentence, or whether this clause was
separated by <while> or <because>. If the

checking returns true then take the last
agent from the stack not the experiencer.
Separators while and because, we call
them scope detachers. For any other
separators take the experiencer.

For example: Mary said John is an idiot
while talking with Lisa.

After separating by separator <while>:
Mary said John is an idiot
<while> talking with Lisa.

This stack in fig-2 is constructed by
traversing the dependency tree of the first
clause of above example, which has a
similar dependency tree at fig-1.

Now the second clause: talking with Lisa
starts with a verb talking and separated by
<while>. Then we should take the last
agent Mary. So, this clause will be: Mary
talking with Lisa. In case of any other
separators, such as <and>, the last
experiencer John should be taken here.

2. Now, detach previous scopes from the
stack if it is not empty. A scope can be
opened by an agent or by an experiencer.
Detaching a scope means removing a
subject (an agent or an experiencer) with
its corresponding event.

If the next sentence or clause within a
scope of punctuation marks, then detach all
the scopes just after the scope opener. For
example: Mary said, �“I like fish and
vegetables. I hate meat.�” Here, the second
sentence I hate meat, which is in the scope
of agent Mary. So, detach all of the scopes
except the scope opener Mary.

If the next sentence is a separated clause
but not within punctuation marks, then

check the separator and detach scopes
reversibly until an agent is found or the
stack becomes empty. If an agent is found
and the separator is a �‘scope detacher�’,
detach that agent.

For example: Mary told that Lisa said that
John is an idiot <and> doesn�’t know any
behavior.

Fig-3 (a) shows the state of the stack after
processing the first clause before <and> at
above example. Fig-3 (b) shows that only
experiencer John has been detached before
processing the second clause because
<and> is not a �‘scope detacher�’.
Otherwise agent Lisa will be detached
also.

3.3.2 Marking Phase
First make all insulting phrases to one
word by putting a �‘-�‘ between words. Ex:
get a life will be get-a-life. Next mark each
word in a sentence if that belongs to any of
the following categories. All potential
insulting elements are marked with a �‘*�’.

*<phrase>: Any insulting phrase such as
get-a-life, get-lost etc.
*<word>: Any insulting word: stupid,
idiot, nonsense, cheat etc.
*<comparable>: If a human being is
compared to these objects such as donkey,
dog etc.
<humanObj>: Any word refers to human
being, such as: he, she, we, they, people,
Bangladeshi, Chinese.
<attributive>: These are the personal
attributes of human being such as
behavior, manner, character etc.

agent: Mary
event: said
experiencer: John
event: is

agent: Mary
event: told
agent: Lisa
event: said

agent: Mary
event: told
agent: Lisa
event: said
experiencer:
John
event: is

fig-2: stack for the first clause
�“Mary said John is an idiot�”

 fig-3 (a) fig-3 (b)

<factive>: All are the speech events such
as said, told, asked etc. In this context
insults, insulted are also factive event.
<evaluative>: These verbs are used to
evaluate a human being�’s personal
attribute such as know, show, have, has,
expressed etc.
<modifier>: All modifier verbs: should,
would, must etc.
<comparableVerb>: These auxiliary verbs
are used to compare a human being with
the comparable. These are is, are, was, and
were.

Each word will be marked with its �‘tag�’
property. For example the word behave
will be marked as
<attributive>behave/VB. We have separate
list of lexicon entry for each category
described above. The regular expression
for matching words or phrases, is case
insensitive

3.3.3 Tree Annotation
Now, we have to feed each clause to the
parser and the tree is built from the parser
output by incorporating those categories at
the marking phase as Boolean properties of
each node. We also incorporate three basic
properties for each node:
label- The word itself
tag- Part of speech of the word
edgeFromParent- Relation between a node
and its parent node.

3.3.4 Detection
A set of predefined rules is applied for
each node while traversing the tree. While
visiting a node we must have two
elements:
1. The root node of the current sub-tree,
which is being visited.

2. Relation to the root, that means which
sub tree we are traversing. Suppose
relation nsubj indicates that we are
traversing the subject part, similarly dobj
indicates we are traversing object part.

The rules are:
1. When the root verb is �‘factive�’, check
whether its subject�’s �‘tag�’ is NNP (Proper

Noun) or PRP (Personal Pronoun) and
�‘edgeFromParent�’ property doesn�’t
indicate it is a passive subject, then this
subject will become an agent. In any other
cases it will be an experiencer.

Ex: Peoples say, �“We are democratic.�”

In this example, Peoples is an experiencer
because its �‘tag�’ is NNS (Common Noun-
Plural), although verb say is �‘factive�’.

2. If a dependency structure doesn�’t
contain a verb at the root, and the current
node is �‘insulted�’ then set the root to be
�‘insulted�’

Ex: That nonsense book

The root node is a noun
book, whose �‘insulted�’
property will be true,
since the word nonsense,
which has its �‘insulted�’ property true, is
found as its modifier.

3. If found any insulting word or phrase
at the subject part, set the �‘insulted�’
property of the current root to true. The
subject will become experiencer, no matter
what it�’s corresponding event is (factive or
non-factive).

4. If the �‘edgeFromParent�’ property of
current �‘insulted�’ node is dobj (direct
object), or iobj (indirect object), about,
with or to then set the parent node (which
must be a verb node) to be �‘insulted�’ and
its corresponding subject will be an
experiencer, regardless of the event
(factive or non-factive).

Ex: Mary always says that nonsense.

In fig-5, since
the �‘insulted�’
node nonsense
 is direct
object of the
verb says,
its �‘insulted�’
property will

That

det amod

nonsense

book

 fig �–4

that

advmod
nonsense

det

dobjnsubj

always
Mary

says

fig-5

be true and subject Mary is an experiencer,
although verb says is a �‘factive�’ event.

5. If the root verb has a �‘negative�’
modifier, and the current node has its
�‘insulted�’ property true, then check its
children. If any of its child nodes has the
�‘label�’ only then root�’s �‘insulted�’ property
will be true, otherwise false.

Ex: He is not only an idiot.

At fig-6 above, the root verb is has a
negative modifier not, and the �‘insulted�’
node idiot has a child only. So, root�’s
�‘insulted�’ property will be true.

6. If an �‘insulted�’ node�’s
�‘edgeFromParent�’ property is as, like or to
and the subject was �‘humanObj�’ then root
will be �‘insulted�’.

Ex: He thinks like a donkey.

In this fig-7,
node donkey is
�‘comparable�’ and
its �‘edgeFromParent�’
property is like and
subject He was a
�‘humanObj�’, so root
will be �‘insulted'

7. If current node at subject part is
�‘comparable�’ and the root verb is
�‘comparableVerb�’, then see whether any
�‘humanObj�’ is at object part and set the
root�’s �‘insulted�’ property true. If the
�‘comparable�’ node is at object part, then

check the subject part for a �‘humanObj�’
and apply the rule.

Ex: A donkey is what he is.

In fig�–8, the
node he is a
�‘humanObj�’ and
the subject
donkey, which
has its �‘comparable�’
property true,
and the root
node is also a
�‘comparableVerb�’,
it is �‘insulted�’.

8. If a �‘humanObj�’ is a modifier of an
�‘insulted�’ node then current root�’s
�‘insulted�’ property will be true. Otherwise,
if a �‘humanObj�’ is a modifier of the root
verb and root verb also has a �‘insulted�’
node as its modifier then it will be
�‘insulted�’.

Ex-1: Nobody thinks as an idiot like him.
Ex-2: Nobody thinks as an idiot, except
him.

Fig-9 (a) shows the corresponding
dependency structure of Ex-1, where a
�‘humanObj�’ him is a modifier of an
�‘insulted�’ node idiot, so root thinks will be
�‘insulted�’. For Ex-2, Fig-9 (b) shows that
�‘humanObj�’ is a modifier of the root verb
thinks and root also has a modifier idiot,
then it will be �‘insulted�’ also.

9. If the property of a node is �‘attributive�’
then we got sequentially two checking.
First check whether the root node is
�‘evaluative�’ or �‘comparableVerb�’. If that is

an

advmod

det

nsubj

idiot

det

dobj
is

He
not

only

fig�–6

He

det

a

likensubj

donkey

thinks

fig-7

what

nsubj

donkey

is

dep

ccomp nsubj

is

he

det

A

fig-8

nsubj as except

Nobody idiot him

an

thinks

det

fig- 9 (b)

idiot Nobody

thinks
asnsubj

himan

like det

fig- 9 (a)

true then next checking is whether the root
node has a �‘negative�’ modifier or a
�‘modifier�’ modifies it. If that is also true
then set �‘insulted�’ property of this root to
true.

Ex: John doesn�’t know any behavior.

In fig-10 when the node behavior will be
visited, the �‘evaluative�’ root verb know
will be �‘insulted�’ since it has a �‘negative�’
modifier n�’t (negative evaluation of
someone�’s personal attribute). Same for
the example: John should know behavior
because the node know will be modified by
a �‘modifier�’ should.

10. If the current node is �‘humanObj�’ and
the �‘edgeFromParent�’ property is by, then
it will be considered as a subject and
immediate top subject of the stack has to
be changed into current node�’s label and
its subject level can be either agent or
experiencer depending on the condition
described in rule no. 1.

 Ex: John was told as an idiot by Mary.

In fig-12 (a) subject John was pushed as an
experiencer into the stack although the root
verb is a �‘factive�’ event, because in fig-11
its �‘edgeFromParent�’ property is nsubjpass
(passive nominal subject). In fig-12 (b),
after visiting the node Mary, the last
subject of the stack is changed to current
node�’s �‘label�’ and its subject level is
switched from experiencer to agent, since
the root verb told is a �‘factive�’ event and
Mary is a proper noun (NNP).

Once tree traversing has been completed,
following steps are to be executed, if we
got the root of a tree has its �‘insulted�’
property true:
1. If currently no scope is open then
check the subject at bottom of the stack
whether it is an agent and its immediate
top subject is an experiencer, and they are
the same person. If they are same, then
change that agent to an experiencer. This
step will not be executed if a scope is open.

For example: Mary said, �“Mary is an
idiot.�”

Here, Mary inside the scope of punctuation
mark is another Mary.

2. Now check whether the stack is empty
or bottom of the stack contains an
experiencer. Then annotate the sentence as
an insult.

The processing part described here, is for
each clause (or that could be a simple
sentence). So, this processing will be
repeated for each clause (or for a sentence)
until the end of the document.

4. Implementation
We used OpenNLP 1.3.0 for separating
sentences within a paragraph. This tool can
be accessed online at the following URL:
http://aye.comp.nus.edu.sg/portal/RPNLPI
R/opennlp_tools_1.3.0,_1.2.0.html.
Although, sometimes OpenNLP makes
confusions incase of �‘dot�’ or �‘full-stop�’ we
are ignoring it, because of its trained
feature. For tagging and dependency

experiencer:
John
event: told

agent: Mary

event: told

any

det
n�’t John

dobj advmod

know

aux nsubj

does behavior

fig-10

told

John was idiot Mary

an

 nsubjpass aux as by

det

fig -11

fig-12 (b)fig-12 (a)

parsing we used stanford-parser (version
jdk 1.5+), which is available at:
http://nlp.stanford.edu/software/lex-
parser.shtml. The parser built at Stanford
University includes a
typedDependenciesCollapsed feature for
its dependency output format that we are
using here.

5. Results and Discussion
This section shows a snapshot of an output
of our program. All of the input sentences
are taken here arbitrarily. Insulting words
or phrases and attributive elements are
shown in bold text.

Input Sample Paragraphs:

She said, "Lisa doesn't know any
behavior." Get lost John! You should be
punished for your shameless work. That
so-called expert has taken two hours to
discuss the problem. Your ilk is primarily
responsible for most of the ills in this
country.

Mary knows that John is rude. He should
know some manner, she replied. He
played that shot like a coward. According
to John, Lisa is so mean. He believes that
stupid Lisa cannot do this. That�’s why;
John was talking about that stupid idea in
the conference.

Actually, John told that because he usually
says that nonsense. Lisa said he is an idiot.
But, that idiot said Lisa is a good girl. And
she still prays that God heals his heart from
all of his meanness. Get that socialist out
of my pocket!

Output:

[Para: 1 Sentence: 2] Get lost John!
[Para: 1 Sentence: 3] You should be
punished for your shameless work.
[Para: 1 Sentence: 4] That so-called expert
has taken two hours to discuss the
problem.

[Para: 1 Sentence: 5] Your ilk is primarily
responsible for most of the ills in this
country.
[Para: 2 Sentence: 1] Mary knows that
John is rude.
[Para: 2 Sentence: 3] He played that shot
like a coward.
[Para: 2 Sentence: 5] He believes that
stupid Lisa cannot do this.
[Para: 2 Sentence: 6] That�’s why; John was
talking about that stupid idea in the
conference.
[Para: 3 Sentence: 1] Actually, John told
that because he usually says that nonsense.
[Para: 3 Sentence: 3] But, that idiot said
Lisa is a good girl.
[Para: 3 Sentence: 4] And she still prays
that God heals his heart from all of his
meanness.

Found: 11 sentences.
Time elapsed: 00 hrs 00 mins 32 secs

Each line of output shows that exactly at
which paragraph and at which sentence an
insulting content is found. The last two
lines show total number of sentences found
and time taken to produce the output for
the given input in Pentium III 800 MHz~
machine. Since, the program can run in
batch mode, time taken for loading the
�“parser�” and �“sentence separator�” has been
excluded. So far, while this paper is being
written, each list contains on average 10-
11 lexicon entries. Other technical issues
(data structures, algorithm, coding style)
are also responsible for the time variation.
Now, consider the last sentence at the third
paragraph of the input, which is clearly an
insult but didn�’t appear at the output. Since
it contains neither insulting words, nor
phrases according to our lexicon entry. In
order to annotate it as a flame, we have to
interpret that somebody wants to get a
�‘humanObj�’ (socialist) from his/her
pocket. This interpretation extremely needs
some incorporation of world knowledge
for capturing the demeaning of a human
being�’s personal status. Only semantic
analysis wouldn�’t necessarily help.

6. Limitations
1. This system can annotate and
distinguish any abusive or insulting
sentence only bearing related words or
phrases that must exist in the lexicon entry.

2. Our preprocessing part is not yet been
full proved to handle all exceptions. For
some excessively long or complicated
sentences there are possibilities of
erroneous output.

3. We didn�’t yet handle any erroneous
input such as misplacing of comma,
unmatched punctuation marks etc. at our
implemented system.

4. Our performance largely depends on
the �“Sentence detector of OpenNLP�” tools
and �“stanford-parser�”. Since stanford-
parser is a probabilistic parser, it is not
guaranteed that all of its output is right.
For those cases, this system also gives the
wrong output.

7. Future Work
1. Incorporating world knowledge to
annotate a sentence that not only bears
insulting words or phrases, but also used as
an insulting manner.

2. Not only insults, can be extended to
recognize other private states- opinion,
emotion, beliefs etc. For example: Mary
thinks that the election was fair. The verb
thinks clearly expresses the subject Mary�’s
private state at certain intensity level
according to the implicit source writer.
Here, verb thinks is the outer-most root
verb of this subjective language and can be
evaluated by the corresponding
dependency structure.

3. Adding morphological analysis,
pragmatics.

4. Adding learning features such as
�‘supervised learning�’, this can be based on
user feedback.

5. Make it for other languages, such as
�‘bangla�’. In that case we need a �‘bangla
dependency parser�’.

8. Applications
It can be useful for any news site since
news mostly represents factual
information, or a site that contains
informative articles such as �‘wikipedia�’.
Another application could be e-mail
filtering because flamers usually send
personal attacking messages to individuals
via private email.

9. Conclusion
We present a new efficient method for
distinguishing flames and information by
interpreting the basic meaning of a
sentence. However, we are distinguishing
flames along with annotating. From
psychological point of view flamers
usually send abusive messages containing
obscene expressions because it affect
people most emotionally, if these messages
are categorized and restrict a user to send
these, human intension to exchange
abusive or insulting messages can be
significantly reduced.

We describe an elegant approach for
extracting the semantic information from
the general semantic structure. According
to Covington [5] English and all other
human languages are �“dependency
language�” and dependency links are closed
to the semantic relationships needed for the
next approach of interpretation. This paper
explores that way of interpretation where
each word exhibits its domain specific
properties through the word dependency
relation in a complete sentence. Simply,
this is an introduction of a �‘new phase�’ of
domain specific meaning interpretation in
a sophisticated method. Moreover, this
method can be extendable for annotating
personal opinions, beliefs etc., which
suggest that the solution is not just an
adhoc but has deeper underlying unity.

References:

[1] E. Spertus, �“Smokey: Automatic

recognition of hostile messages,�” In
Proceedings of the Eighth Annual
Conference on Innovative
Applications of Artificial
Intelligence (IAAI), 1997, pp.
1058-1065.

[2] J. Wiebe, T. Wilson, R. Bruce, M.

Bell and M. Martin, �“Learning
subjective language,�”
Computational Linguistics, Vol. 30,
No. 3, 2004, pp. 277-308.

[3] J. Wiebe, T, Wilson, and C. Cardie,

�“Annotating expressions of
opinions and emotions in
language,�” Language Resources
and Evaluation, Vol. 39, Issue 2-3,
2005, pp. 165-210.

[4] M. Martin, �“Annotating flames in

Usenet newsgroups: a corpus study,�”
For NSF Minority Institution
Infrastructure Grant Site Visit to
NMSU CS department, 2002.

[5] M. A. Covington. �“A fundamental

algorithm for dependency parsing,�”
Proceedings of the 39th Annual ACM
Southeast Conference, 2001, pp. 93-
95

