Machine Learning and Data Mining An Introduction with WEKA

AHPCRC Workshop - 8/19/10 - Dr. Martin

Based on slides by Gregory Piatetsky-Shapiro from Kdnuggets http://www.kdnuggets.com/data_mining_course/

Terminology

- Components of the input:
 - Concepts: kinds of things that can be learned
 - Aim: intelligible and operational concept description
 - Instances: the individual, independent examples of a concept
 - Note: more complicated forms of input are possible
 - Attributes (Features): measuring aspects of an instance
 - We will focus on nominal and numeric ones

What's a concept?

- Data Mining Tasks (Styles of learning):
 - Classification learning:
 predicting a discrete class
 - Association learning:
 detecting associations between features
 - Clustering:
 grouping similar instances into clusters
 - Numeric prediction: predicting a numeric quantity
- Concept: thing to be learned
- Concept description: output of learning scheme

Classification learning

- Example problems: attrition prediction, using DNA data for diagnosis, weather data to predict play/not play
- Classification learning is supervised
 - Scheme is being provided with actual outcome
- Outcome is called the class of the example
- Success can be measured on fresh data for which class labels are known (test data)
- In practice success is often measured subjectively

Association learning

- Examples: supermarket basket analysis -what items are bought together (e.g. milk+cereal, chips+salsa)
- Can be applied if no class is specified and any kind of structure is considered "interesting"
- Difference with classification learning:
 - Can predict any attribute's value, not just the class, and more than one attribute's value at a time
 - Hence: far more association rules than classification rules
 - Thus: constraints are necessary
 - Minimum coverage and minimum accuracy

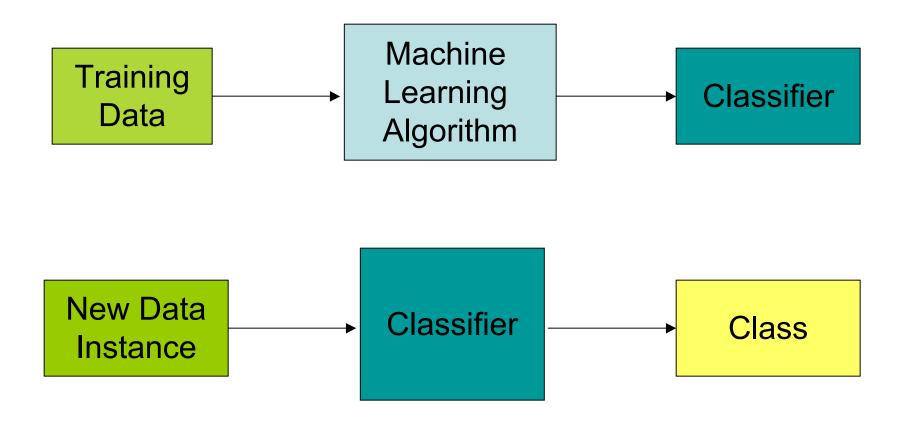
Clustering

- Examples: customer grouping
- Finding groups of items that are similar
- Clustering is unsupervised
 - The class of an example is not known
- Success often measured subjectively

	Sepal length	Sepal width	Petal length	Petal width	Type
1	5.1	3.5	1.4	0.2	ris setosa
2	4.9	3.0	1.4	0.2	Iris setosa
51	7.0	3.2	4.7	1.4	Iris versicolor
52	6.4	3.2	4.5	1.5	Iris versidolor
101	6.3	3.3	6.0	2.5	Iris virginica
102	5.8	2.7	5.1	1.9	ris virginica
witten&eibe					

Numeric prediction

- Classification learning, but "class" is numeric
- Learning is supervised
 - Scheme is being provided with target value
- Measure success on test data


Outlook	Temperature	Humidity	Windy	Play-time
Sunny	Hot	High	False	5
Sunny	Hot	High	True	0
Overcast	Hot	High	False	55
Rainy	Mild	Normal	False	40

Today: Focus on Classification

- Learn Classifier (function, rule, hypothesis)
- Supervised: learn from training data

$$(\vec{x}_1, y_1), ...(\vec{x}_n, y_n)$$

- Feature vector, class
- Apply to new data
 - Feature vector -> class

Now a Real Example

- Data collected from Medical Web Pages
- Goal: learn two classes
 - Reliability (trustworthiness of information)
 - Type of Page

Basic Steps

- Build a training corpus of web pages
- Tag instances with classes
- Extract Features
- Learn a classifier
- Test on new data

Data

- MMED1000 Corpus
 - 1000 pages
 - First 100 hits on Google for 10 topics
 - "Adrenoleukodistrophy"
 - "Alzheimer's"
 - "Endometriosis"
 - · "Fibromyalgia"
 - "Obesity"
 - "Pancreatic cancer"
 - · "colloidal silver"
 - "irritable bowel syndrome"
 - "late lyme disease"
 - "lower back pain"

Spectrum of:
Agreement
condition
diagnosis
treatment
cause
How common

254 Features

- Link-Based
 - Inlinks, Outlinks, PageRank, Domain
 - Server host name, secure
- HTML markup
 - Symbols, metadata, JavaScript
 - Bold, italics, underline, font
 - Counts and frequencies

254 Features

Text properties

- LSA vector length, coherence, words per paragraph
- Personal pronouns, punctuation, unique words

Lists of words

- Whole text, outlinks, anchor text
 - Criteria, medical, commercial, alternative
 - Disclaimer, diagnosis, shopping cart, miracle

Features Most Strongly Correlated with Reliable Pages

- "!" in anchor text negatively
- Outlinks with same server host name and .uk
- Frequency of font changes negatively
- "medicine" in anchor text

- Words in text
- diagnosis
- disease

clinical

- medication
- medicine
- patient
- symptom

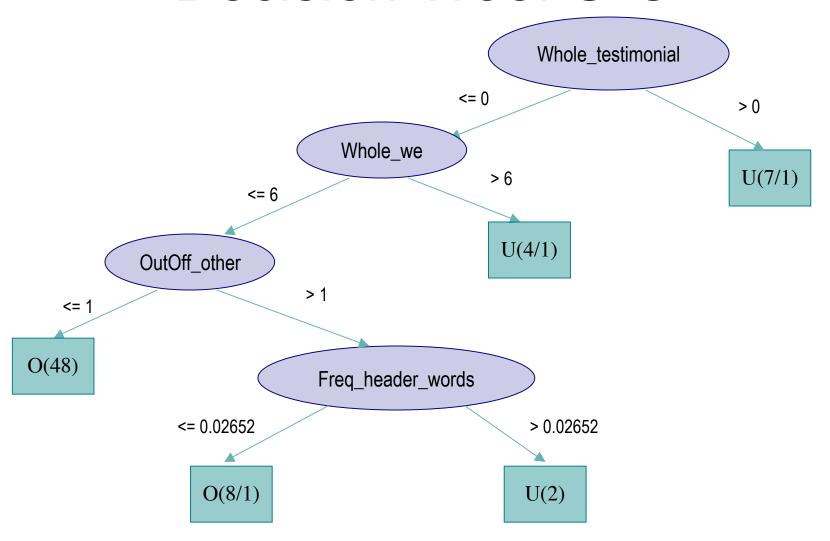
Features Most Strongly Correlated with Unreliable Pages

- "!" in text
- Secure outlinks in the same server host name - negatively
- Number of font attributes
- Words in anchor text
 - price
 - products
 - testimonial

- Words in Text
 - doctor
 - I, me, my, them, us, we, you, your
 - miracle
 - natural
 - prevention
 - price
 - products
 - purchase
 - "to order"
 - testimonial
 - therapist

Algorithms

- Selecting features
 - Information Gain
 - Statistics
 - correlation, regression
- Classification
 - Naïve Bayes
 - Decision Tree (C4.5)
 - SVM
 - N-Closest
- Using SPSS and Weka

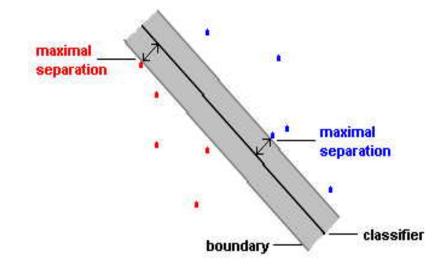

"Data Mining: Practical machine learning tools with Java implementations," by Ian H. Witten and Eibe Frank, Morgan Kaufmann, San Francisco, 2000.

http://www.cs.waikato.ac.nz/ml/weka/

Decision Trees

- Nodes are the features
- Maximize information gain
 - Expected reduction in entropy by partitioning examples according to given attribute $-\sum p_i \log_2 p_i$
 - Entropy =
 - 0 when all in same class
 - 1 when equal number in each class

Decision Tree: U-O



Naïve Bayes

- Want to calculate P(C|f)
 - C = class, f = set of features observed
 - Use Bayes Rule: P(C|f) = (P(C)p(f|C))/p(f)
 - Reduces to computing p(f|C)
 - Assume features conditionally independent given the class
 - $p(f|C) = product(p(X_i|C))$

Support Vector Machines

- Maximum Margin Hyperplane
 - Optimal separation between classes
- Kernel method
 - Nonlinear transformation between dot product spaces
 - Nonlinear space transformed to linear space
- http://www.ucl.ac.uk/oncology/MicroCore/HTML _resource/images/svm_1.jpg

Latent Semantic Analysis

- Provides measures of the semantic relatedness, quality, and quantity of information contained in discourse
- Implementation: Four Basic Steps
 - Term by document (context) matrix
 - Convert matrix entries to weights
 - Singular Value Decomposition (SVD) performed on matrix
 - Reduce Rank of matrix
 - all but the k highest singular values are set to 0
 - produces k-dimensional approximation of the original matrix (in least-squares sense)
 - this is the "semantic space"

N-Closest

- Version of K-Nearest Neighbor algorithm
- Finds closest pages in LSA semantic space to page P
 - Checks their classes
 - Sums cosines for each class
 - Predicts Ps class based on largest sum

Standard Performance Measures

- Accuracy: percent correct
 - For classifier: (a+d)/(a+b+c+d)
- Precision: portion of selected items that the system got right
 - For class R: a/(a+b)
- Recall: portion of the target items that the system selected
 - For class R: a/(a+c)
- F-Measure: (2*precision*recall)/(precision+recall)

	R is correct	O is correct
R predicted	а	b
O predicted	С	d

Kappa Statistic

- Chance Corrected Measure of Agreement
- Cohen 1960
- $\kappa = (P(O) P(E)) / (1 P(E))$
 - P(O) = proportion of agreement observed
 - P(E) = proportion of agreement expected by chance

Now Let's Look at the .arff file